Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Радиус сходимости и интервал сходимости степенного ряда.



Рассмотрим степенной ряд:

(1) Число (конечное или бесконечное) R> =0 наз радиусом сходимости ряда (1) если для любого х такого, что |x|< R ряд (1) сходится, а для " х таких. что |x|> R ряд расходится Интервал на числовой оси состоящий из т. х для которых |x|< R, т. е. (-R, +R) наз. интервалом сходимости.

Т1 Для всякого степенного ряда (1) существует радиус сходимости R 0< =R< =+¥ при этом, если |x|< R, то в этой т. х ряд сходится абсолютно

Если вместо х взять у = х-х0, то получится: интервал сходимости: |x-x0< R| будет: (x0-R, x0+R)При этом если |x-x0|< R? то ряд сходится в т. x абсолютно иначе расходится. На концах интервала, т. е. при x = -R, x=+R для ряда (1) или x = x0-R, x=x0+R для ряда (3) вопрос о сходимости решается индивидуально. У некоторых рядов интервал сходимости может охватывать всю числовую прямую при R = +¥ или вырождаться в одну точку при R = 0.

Т2 Если для степенного ряда (1) существует предел (конечный или бесконечный): , то радиус сходимости будет равен этому пределу.

Док-вы: Рассмотрим ряд из абсолютных величин и по Даламберу исследуем его на сходимость:

(5)

1)Рассмотрим случай, когда  конечен и отличен от 0. Обозначив его через R запишем (5) в виде При числовом значении х степенной ряд становится числовым рядом, поэтому по Даламберу ряд (1) сходится если |x|/R< 1, т. е. |x|< R, тогда по признаку абсолютной сходимости ряд (1) сходится абсолютно при |x|< R иначе ряд расходится.

2)Пусть  = ¥ тогда из(5) следует, что для любого х Î R Итак ряд (1) сходится при любом х причем абсолютно.

3) Пусть  =0 тогда из (5) следует, что  и ряд расходится для любого х. Он сходится только при х = 0 В этом сл-е R = 0.

Т3 Если существует предел конечный или бесконечный , то (10)

№15

Условия

Существования и вычисления

Криволинейных интегралов.

Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений:

(1)

имеет на отрезке [a, b] непрерывные производные: j’(t), y’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра t Î [a, b] для которых (j’(t))2+(y’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ! ).

Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x, y), P(x, y), Q(x, y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:

Отседова жа вытекаает штаа:

В частности, если кривая АВ задана уравнением y = y(x), a< =x< =b, где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:

 

ну и сумма там тожжа упростица.

ну и наоборот тожжа так будит, если х = х(у)

Если АВ задана в криволинейных координатах a < = j < = b где ф-ция r(j) непрерывно дифференцируема на отрезке [a, b] то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)× cos(j),  

y= r(j)× sin(j).

и у второго рода так же.

Прямая L наз кусочно-гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую. все выше сказанное справедливо и для пространственной кривой (с буквой зю).

Свойства степенных рядов

Т1 Если степенной ряд (1) имеет радиус сходимости R> 0, то на любом отрезке действительной оси вида |x|< =r, 0< r< R (2) (или [-r, r]) целиком лежащем внутри интервала сходимости ряд (1) сходится равномерно.

Для ряда отрезком равномерной сходимости будет отрезок |x-x0|< =r или ([x0-r, x0+r])

Т2 На любом отрезке |x-x0|< =r сумма степенного ряда является непрерывной ф-цией.

Т3 Радиусы сходимости R, R1, R2 соответственно рядов× (5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд.

Пусть ф-ция f(x) является суммой степенного ряда (9)

Т4 Дифференцирование степенного ряда

Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда (9):

f’(x)= При этом радиус сходимости полученного ряда = R

Т5 О интегрировании степенного ряда

Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.

Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться.

№16

Свойства

Криволинейных интегралов

Св-ва криволинейных интегралов 1 рода:

1.Константа выносится за знак интеграла, а интеграл суммы можно представить в виде суммы интегралов:

2. Если дуга АВ состоит из двух дуг Ас и Св не имеющих общих внутренних точек и если для ф-ции f(x, y) сущ криволинейный интеграл по АВ, то для для сей ф-ции сущ криволинейные интегралы по АС и по ВС причем:

3.

4.Ф-ла среднего значения

если ф-ция f(x, y) непрерывна вдоль кривой АВ, то на этой кривой найдется точка М, такая, что:

, где l – длина кривой

Криволинейный интеграл 2 рода обладает всеми свойствами интегралов 1 рода, и исчо при изменении направления прохождения кривой он меняет знак..И вапще все сказанное выше справедливо и для пространственной кривой (этта та которая с буквой зю)

2 Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена.

Пусть (1) сходится при |x-x0|< R а его сумма является ф-лой f(x)= (2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1).

Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то

и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно.

Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд: (6) наз рядом Тейлора ф-ции f в т, х0

При х0=0 ряд Тейлора принимает вид:

(6’) и называется ряд Маклорена.

Ряд Тейлора может:

1 Расходится всюду, кроме х=х0

2 Сходится, но не к исходной ф-ции f(x), а к какой-нибудь другой.

3 Сходится к исходной ф-ции f(x)

Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения дополнительных условий треб. ф-ла Тейлора.

Т2 Если ф-ция f(x) (n+1) раз дифференцируема на интервале (x0-h, x0+h) h> 0, то для всех x Î (x0-h, x0+h) имеет место ф-ла Тейлора:

где остаток rn(x) можно записать:

(8)

(9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа.

Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.

Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е " x Î U(x0) |f(n)(x)|< =C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности.

№17

Формула Грина

Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами.

Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x, y) и Q(x, y) непрерывны вместе со своими частными производными: в данной области. тогда имеет место ф-ла:

И вот вся эта фигулина и есть формула Грина.

Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с< =y< =d x1(y)< =x2(y) или

y = y1(x), y=y2(x) a< =x< =b y1(x)< =y2(x).

Рассмотрим область Д ограниченную неравенствами: a< =x< =b и y1(x)< =y2(x). и преобразуем двойной интеграл  к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим:

каждый из 2 определенных интегралов в правой части последнего равенства = криволинейному интегралу 2 рода взятому по соответствующей кривой а именно:

Итак двойной интеграл:

Формула Грина остается справедливой для всякой замкнутой области Д, которую можно разбить проведением дополнительных линий на конечной число правильных замкнутых областей.

2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена)

1Разложение ф-ции ех

 ряд Маклорена.

радиус сходимости:

R=¥ следовательно ряд абсолютно сходится на всей числовой прямой.

2Разложение sinx и cosx В степенной ряд Маклорена

сходится на всей числовой оси

 сходится на всей числовой оси

3. f(x) = (1+x)a

Наз. биномиальный ряд с показателем a Различают 2 случая:

1- a Î N, тогда при любом х все члены ф-лы исчезают, начиная с (a +2) поэтому ряд Маклорена содержит конечное число членов и сходится при всех х. Получается формула Бинома Невтона: , где  биномиальный коэффициент.

2- a Î R> N (a ¹ 0 х ¹ 0) и ряд сходится абсолютно при |x|> 1

4 Разложение ф-ции ln(1+x)

сходится при –1< x< =1

5 Разложение arctgx в степенной ряд Маклорена

сходится при -1< =x< =1

№18

1 Некоторые приложения криволинейных интегралов 1 рода.

1.Интеграл  - длине дуги АВ

2.Механический смысл интеграла 1 рода.

Если f(x, y) = r(x, y) – линейная плотность материальной дуги, то ее масса:

для пространственной там буква зю добавляется.

3.Координаты центра масс материальной дуги:

4. Момент инерции дуги лежащей в плоскости оху относительно начала координат и осей вращения ох, оу:

5. Геометрический смысл интеграла 1 рода

Пусть ф-ция z = f(x, y) – имеет размерность длины f(x, y)> =0 во всех точках материальной дуги лежащей в плоскости оху тогда:

, где S – площадь цилиндрической поверхности, кот состоит из перпендикуляров плоскости оху, восст в точках М(x, y) кривой АВ.

2 Геометрические и арифметические ряды.

 

№19

1 Некоторые приложения криволинейных интегралов 2 рода.

Вычисление площади плоской области Д с границей L

2.Работа силы. Пусть материальная т очка под действием силы перемещается вдоль непрерывной плоской кривой ВС, направясь от В к С, работа этой силы:

при пространственной кривой там исчо третья функция появитца для буквы зю.

2 Свойства сходящихся рядов

 

№20

1 Условия независимости криволинейного интеграла 2 рода от пути интегрирования.

Плоская область W наз односвязной если не имеет дыр. т. е. однородная.

Пусть ф-ция P(x, y) и Q(x, y)вместе со своими частными производными непрерывны в некоторой замкнутой, односвязной области W тогда следующие 4 условия эквиваленты, т. е. выполнение какого либо из них влечет остальные 3.

1. Для " замкнутой кусочногладкой кривой L в W значение криволинейного интеграла:

2. Для все т. А и т. В области W значение интеграла

не зависит от выбора пути интегрирования, целиком лежащего в W.

3. Выражение Pdx+Qdy представляет собой полный дифференциал некоторых функций определенных в W существует ф-ция E=c(х, у) опред в W такая, что dE = Pdx+Pdy

4. В области W

Отседова следовает, что условие 3 является необходимым и достаточным условием при котором интегралы 2 рода не зависят от выбора пути интегрирования.

2 Интегральный признак сходимости ряда. Ряд Дирихле.

 

№21

1 Интегрирование в полных дифференциалах

Пущай ф-ция P(x, y) и Q(x, y)  - непрерывны в замкнутой области W и выражение P(x, y) + Q(x, y) есть полный дифееренциал некоторой ф-ции F(x, y) в W, что равносильно условию: , тогда dF=Pdx+Qdy.

Для интегралов независящих от пути интегрирования часто применяют обозначение:

или

А(x0, y0) Î l, В = (х, у) Î l

поэтому

F(x, y)=

 где (х0, у0) – фиксированная точка Î l, (x, y) – произвольная точка Î l, с – const. и дает возможность определить все ф-ции, имеющие в подинтегральном выражении свои полные дифференциалы. Тк. интеграл не зависит от пути интегрирования, за путь инт. удобно взять ломаную звень которой параллельны осям координат. тогда формула преобразуется к виду.

2 Признаки сравнения

 

№22

1 Сведение 2-ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)< = у2(х) на всем отрезке.

D={x, y}: a< =x< =b; y1(x)< =y< =y2(x)

Отрезок [a, b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если фция f(x, y) задана на Д и при каждом х Î [a, b] непрерывна на у, на отрезке, [y1(x), y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл: , наз повторным интегралом от ф-ции f(x, y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

 

2 Признаки Даламбера и Коши

 

№23

Ной интеграл

В полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |ОA| расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0< =r< =+¥, 0< =j < =2p.

Зависимость между прямоугольными и полярными координатами: x = r× cosj, y = r× sinj.

Якобиан преобразования будет равен:

И формула при переходе примет вид:

2 Знакочередующиеся ряды признак Лейбница

 

№24

Замена переменных

В тройном интеграле

Если ограниченная замкнутая область пространства V = f(x, y, z) взаимно однозначно отображается на область V’ пространства = (u, v, w) Если непрерывно дифференцируемы функции: x=x(u, v, w), y=y(u, v, w), z=z(u, v, w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x, y, z формулами: x=rcosj, y=rsinj, z=z (0< =r< =+¥, 0< =j < = 2p, -¥ < =z< =+¥ )

Якобиан преобразования:

И поэтому в цилитндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r? j q, связанными с z, y, z формулами x=rsinq× cosj,  

y=r sinqsinj, z=rcosq.

(0< =r< =+¥, 0< =j < = 2p,

0< =q < =2p)

Якобиан преобразования:

Т. е. |J|=r2× sinq.

Итак, в сферических координатах сие будет:

2 Радиус сходимости и интервал сходимости степенного ряда

 

№25

Условия


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 86; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.077 с.)
Главная | Случайная страница | Обратная связь