Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
А КАКИМ СПОСОБОМ вообще можно задать какое-то конкретное направление?
Вспомним забавную модель урока Предел функции двух переменных, в которой мы перемещаемся по комнате в плоскости декартовой системы , а прямо над нами «зависло одеяло», заданное функцией . Давайте встанем в некоторую точку области определения. В зависимости от выбора точки нам доступен бесконечно малый «шажок» в некоторых или, что вероятнее, во всех направлениях. Направление традиционно обозначается исходящим из точки лучом , лежащим в плоскости . Сам луч можно определить с помощью угла (между ним и осью либо ), а ещё лучше – с помощью вектора. Вопрос второй: как узнать скорость изменения функции в каком-либо направлении? С помощью производной по направлению . Как вариант, в обозначении можно использовать букву «эф»: . Если в точке существуетпроизводная по направлению луча (исходящего из точки и лежащего в плоскости ), то её можно рассчитать по следующей формуле: , где: – частные производные 1-го порядка в точке ; Примечание : Производная по направлению, конечно же, не обязана существовать во всех возможных направлениях (представьте, например, «край одеяла»). Со строгими условиями её существования можно ознакомиться в учебной литературе. На практике популярна более компактная запись: . – это ЧИСЛО, характеризующее скорость изменения функции, причём: – если , то функция в точке по данному направлению возрастает (поверхность «идёт в гору»); – если , то функция в точке по данному направлению убывает («склон» поверхности); – если , то функция в точке по данному направлению постоянна (поверхность параллельна плоскости ). Геометрический смысл производной по направлению по существу напоминает геометрический смысл «обычной» производной. Представьте плоскость, проходящую через луч «эль» перпендикулярно плоскости . Данная плоскость «высекает» из поверхности пространственную линию , которой, очевидно, принадлежит точка . Производная по направлению численно равна тангенсу угла между касательной к линии в точке и плоскостью : Примечание : также можно сказать, что – это угол между касательной к линии в точке и её ортогональной проекцией на плоскость , т.е. направлением луча (см. Пример 1, пункт «д» статьи Основные задачи на прямую и плоскость ). Более того, само обозначение символизирует отношение приращения функции («высоты») к бесконечно малому «шажку» по направлению луча «эль». Таким образом, чем больше по модулю, тем больше крутизна поверхности в данной точке по данному направлению. Крутизну можно выразить непосредственно через угол: , после чего данная характеристика приобретает простой обывательский смысл («подъём в гору под углом 30 градусов» и т.п.). Впрочем, в геодезии приняты другие стандарты. Как видите, всё очень и очень напоминает производную функции одной переменной – с тем отличием, что направлений стало гораздо больше, и по одну руку может быть «скала», а по другую – «пропасть». Кстати, все ли понимают, почему мы делаем именно бесконечно малые «шаги» по различным направлениям? Дело в том, что существует поверхности, «рельеф» некоторых меняется невероятно быстро – на 1 квадратном сантиметре могут запросто умещаться миллионы «гор» и «ущелий», да и того больше. Поэтому для корректного описания «местности» и используются бесконечно малые величины После небольшого экскурса в теорию вернёмся к самой формуле , из которой выведем скорость изменения функции в двух хорошо знакомых направлениях. Рассмотрим исходящий из точки луч , параллельный оси (либо совпавший с ней) и направленный в сторону её острия. Очевидно, что данный луч однозначно определяется единичным вектором . Таким образом, (напоминаю, что координаты вектора единичной длины – это и есть соответствующие направляющие косинусы) и общая формула чудесным образом упрощается: То есть, частная производная «по икс» в точке характеризует скорость изменения функции в направлении острия оси (параллельно данной оси). Самостоятельно проведите рассуждения для луча и сделайте вывод о том, что . Теоретическая часть урока начинает плавно перетекать в практику, и первые задачи будут посвящены «трёхмерным аналогам» примеров статьи о смысле производной: Пример 1 Найти производную функции в точке по направлению вектора А теперь давайте немного разомнёмся и немного походим по комнате. Предположим, что под нами плоскость . Да-да, всё верно – сейчас мы перемещаемся ПО САМОЙ поверхности. На уроке Предел функции двух переменных нам помогал один волшебный персонаж, но сегодня настал черёд самостоятельно исследовать поверхности – чтобы как следует прочувствовать тему =) Что с высотой? Очевидно, что в каком бы направлении мы ни пошли – высота будет оставаться неизменной. Таким образом, сразу понятно, что в любой точке и по любому направлению скорость изменения функции равна нулю. Однако, несмотря на известный ответ и всю простоту задачи, со всей ответственностью отнесёмся к её решению: Вычислим скорость изменения функции по направлению исходящего из точки луча , который определяется вектором . Используем рабочую формулу: Найдём частные производные 1-го порядка: В результате получены две константы, а именно, два нуля. Что это значит? Это значит, что частные производные равны нулю В ЛЮБОЙ точке области определения функции (вся плоскость ), в частности и в точке : Примечание : формально частные производные можно расписать в виде и выполнить подстановку координат точки : Полученные результаты подтверждают тот факт, что откуда бы и по какому бы направлению мы ни передвигались – наша высота будет сохраняться постоянной: В принципе, здесь следует записать ответ, но ради отработки общего алгоритма решения найдём направляющие косинусы предложенного направления. По существу, требуется найти вектор единичной длины, который сонаправлен с вектором . Задача нахождения такого вектора подробно рассмотрена в самом конце статьи Скалярное произведение векторов. Воспользуемся готовой формулой: Легко проверить, что любой другой ненулевой сонаправленный вектор приводится к этому же «эталону». Протестируем, например, вектор : К слову, не лишним будет убедиться, что его длина действительно равна единице: Эквивалентный способ проверки основан на известном равенстве : Собственно, финальный расчёт: Ответ: Можно использовать обозначение либо , подчёркивая, что производная по направлению найдена именно в точке . Однако упущение невелико, поскольку это и так ясно из контекста решения. Легко понять, что проведённые выкладки справедливы и для любой другой «горизонтальной» плоскости, то есть производная функции в любой точке и по любому направлению равна нулю. Ну а сейчас самое время покинуть душные квартиры и выйти склон зелёного холма, где безмятежно пригревает майское солнышко. …Хотя кто знает, возможно, вы там и находитесь – ведь с развитием гаджетов люди стали получать знания в самых неожиданных местах =) Но, так или иначе – добро пожаловать на природу: Пример 2 Найти производную функции в точке по направлению: 1) координатных осей (параллельно им); Решение: итак, выберите произвольную точку «зелёного холма» и осмотритесь по сторонам. Теперь переместитесь в какую-нибудь другую точку плоскости и снова оцените «местность»: Как всегда, в лучших своих традициях я аккуратно встроил теоретический материал в развёрнутое практическое задание, и после увлекательной прогулки настало время подвести итог: Ответ: Если что-то осталось недопонятым, то, вероятнее всего, у вас пробелы в теории производной функции одной переменной и/или основах аналитической геометрии. Особенно много сегодня требуется геометрических знаний. Спокойствие и только спокойствие – всё можно наверстать буквально в ближайший час, после чего вернуться на эту страницу и перечитать начало статьи ещё раз. Ну а мы продолжаем рассматривать тематические задачи, и оставшиеся примеры будут значительно короче. Но расслабляться ни в коем случае не следует, поскольку впереди ещё немало нового и интересного материала: Пример 3 Дана функция , точка и вектор . Требуется найти: Классика жанра – найти производную по какому-нибудь направлению и градиент. Закрепляем алгоритм решения: а) Обозначим через исходящий из точки по направлению вектора луч и воспользуемся стандартной формулой: Найдём частные производные 1-го порядка: А вот сейчас наступает действительно ответственный момент – это «реальное» вычисление частных производных 1-го порядка в точке . Всегда проявляйте ПОВЫШЕНОЕ ВНИМАНИЕ на данном этапе: Полезный приём : несмотря на кажущееся отсутствие хорошей проверки, я всё-таки придумал небольшое ноу-хау, которое с высокой эффективностью позволяет избегать вычислительных ошибок. Ухищрение состоит в следующем: когда вам предложена задача с неприятными и плохо проверяемыми вычислениями, то сначала СОСРЕДОТОЧЕННО прорешайте её на черновике и отложите листок в сторону. Далее переключаемся на другие дела, после чего черновое решение благополучно забывается. Спустя некоторое время (полчаса - час, а ещё лучше – день) так же ВНИМАТЕЛЬНО оформляем чистовое решение и сверяемся с черновиком. Почти 100% – ошибка «не пройдёт». На очереди нахождение единичного вектора, сонаправленного с вектором : На завершающем этапе тоже проявляем внимание, правда, здесь уже гораздо меньше шансов что-то «прозевать»: И конечно, не забываем о геометрическом смысле результата: отрицательный знак производной сообщает нам об убывании функции в данном направлении, т.е. при бесконечно малом «шажке» из точки по направлению луча «эль» крутизна «склона» поверхности составит . Особо подчёркиваю, что в отличие от Примеров № 1, 2 оговорка о «бесконечно малом шажке» становится необходима, ибо многие поверхности – это «не плоскости плоские», а «волны волнистые», и в соседней, пусть даже очень близкой точке производная по тому же направлению в общем случае будет другой. Кстати, в условии запросто может спрашиваться НЕ о производной по направлению, а о крутизне поверхности – и в этом случае расчёт угла станет обязательным завершающим шагом решения. 2) Второй пункт совсем прост: Однако и тут снова следует проявить аккуратность – условие задачи вполне может запрашивать НЕ градиент, а «наибольшую скорость роста функции в точке ». Тогда находим производную по направлению градиента: А если же требуется найти «наибольшую крутизну поверхности в точке », то в ответе указываем НЕ градиент и НЕ его длину, а угол . Завершая этот содержательный разбор полётов, расскажу о более широком понятии градиента. В более широком смысле под градиентом понимают векторную функцию , которая каждой точке области определения функции (где существует градиент) ставит в соответствие вектор, показывающий направление максимального роста функции в данной точке. Так, например, в нашем случае можно составить векторную функцию и для десятка-другого точек построить целую «карту» направленных отрезков, которая безо всякого трёхмерного чертежа достаточно хорошо охарактеризует «поведение» поверхности в интересующих нас направлениях. Отсюда становится окончательно понятно, почему градиент в точке – это несвободный вектор, отложенный именно от конкретной точки. Молодцы, что осилили =)...теперь и теория поля будет нипочём! Ответ: Пара типовиков для самостоятельного решения: Пример 4 Найти производную функции в точке по направлению вектора и максимальную крутизну поверхности в данной точке. Слишком просто? В простых задачах и ошибаются! …ну что же, сами виноваты – задачка позанятнее: ))) Пример 5 Найти производную функции в точке в направлении, составляющем угол с градиентом функции в этой точке. Если возникли затруднения, пожалуйста, вернитесь к вышеизложенному материалу. Примерный образец чистового оформления решений в конце урока. На практике довольно часто встречаются задания, в которых направление задаётся другими способами: Пример 6 Найти производную функции в точке : То есть, направления заданы через углы. Учимся с ними разбираться: Решение: частные производные в точке понадобятся в обоих пунктах и поэтому в первую очередь их и найдём: Ну а что тут такого? Числа как числа. а) Обозначим через луч, исходящий из точки и образующий угол с положительным направлением оси . Очевидно, что данный луч лежит в 1-й координатной четверти (правой верхней) и образует угол в с осью . Картина очень простая, но если таки мутноватая, выполните чертёж. Формула производной по направлению, естественно, та же: И главный вопрос – как найти направляющие косинусы? Я предлагаю следующую цепочку рассуждений, которая мне показалась наиболее простой: Пусть направляющий вектор луча отложен от начала координат. Совершенно понятно, что этот вектор тоже наклонен к оси под углом 30 градусов. Угол – это угол между вектором и положительной полуосью . То есть, угол сразу «готов к употреблению» – даже обозначения совпали (в условии вполне могла быть и другая буква, например, ). Угол – это угол между вектором и положительной полуосью . С «бетой» никаких проблем: поскольку угол между координатными осями составляет 90 градусов, то или . Вычислим направляющие косинусы: Контроль: Искомая производная по направлению: …это ещё божий одуванчик, бывает гораздо хуже. б) Вычислим производную в направлении биссектрисы 2-го координатного угла. Напоминаю, что координатные четверти нумеруются против часовой стрелки, и очевидно, речь идёт о биссектрисе, которая делит пополам левую верхнюю четверть. Мало-мальски подготовленные люди легко подберут направляющий вектор этого направления, напрашивается вектор , и сразу найдут направляющие косинусы: Такой вариант решения вполне приемлем, однако «подарочный» угол, кратный 45 градусам, встречается далеко не каждый день, и поэтому мы отработаем универсальную схему решения. Пусть вектор , задающий биссектрису 2-го координатного угла, отложен от начала координат (как вы уже поняли, именно в таком положении проще всего высмотреть нужные углы): Обозначим буквой луч, который исходит из точки в направлении биссектрисы 2-го координатного угла. Вычислим производную по данному направлению: Ответ: На практике так подробно, конечно, расписывать не нужно и решение следующей задачи поможет вам понять ориентировочный минимум комментариев: Пример 7 Найти производную функции в точке : И в заключение этого параграфа хочу отметить, что помимо геометрии, рассматриваемый математический инструментарий широко применяется в различных физических задачах – примеров настолько много, что от физики могут взвыть даже некоторые физики =)
|
Последнее изменение этой страницы: 2020-02-17; Просмотров: 112; Нарушение авторского права страницы