Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Признак сходимости Даламбера⇐ ПредыдущаяСтр 26 из 26
Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились. Перед тем как сформулировать сам признак, рассмотрим важный вопрос: Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения. Предельный признак сравнения применяется тогда, когда в общем члене ряда: 1) В знаменателе находится многочлен. Основные же предпосылки для применения признака Даламбера следующие: 1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , , и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует. 2) В общий член ряда входит факториал. С факториалами мы скрестили шпаги ещё на уроке Числовая последовательность и её предел. Впрочем, не помешает снова раскинуть скатерть-самобранку: ! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби. 3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6. Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера. Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера. Признак Даламбера: Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то: У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к уроку Пределы. Примеры решений. Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться. Радикальный признак Коши Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни. Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера. Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел: , то: Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда корень «хорошо» извлекается из общего члена ряда. Как правило, этот перец находится в степени, которая зависит от . Есть еще экзотические случаи, но ими голову забивать не будем. Иногда для решения предлагается провокационный пример, например: . Здесь в показателе степени нет «эн», только константа. Тут нужно возвести в квадрат числитель и знаменатель (получатся многочлены), а далее придерживаться алгоритма из статьи Ряды для чайников. В подобном примере сработать должен либо необходимый признак сходимости ряда либо предельный признак сравнения.
Интегральный признак Коши Или просто интегральный признак. Разочарую тех, кто плохо усвоил материал первого курса. Для того чтобы применять интегральный признак Коши необходимо более или менее уверенно уметь находить производные, интегралы, а также иметь навык вычисления несобственного интеграла первого рода. В учебниках по математическому анализу интегральный признак Коши дан математически строго, но слишком уж поморочено, поэтому я сформулирую признак не слишком строго, но понятно: Рассмотрим положительный числовой ряд . Если существует несобственный интеграл , то ряд сходится или расходится вместе с этим интегралом. И сразу примеры для пояснения: Пример 1 Исследовать ряд на сходимость Используем признак Даламбера: В рассмотренном примере в общем члене ряда у нас встретился многочлен 2-й степени. Что делать, если там многочлен 3-й, 4-й или более высокой степени? Дело в том, что если дан многочлен более высокой степени, то возникнут трудности с раскрытием скобок. В этом случае можно применять «турбо»-метод решения. Пример 2 Возьмём похожий ряд и исследуем его на сходимость Сначала полное решение, потом комментарии: Используем признак Даламбера: (1) Составляем отношение . (3) Рассмотрим выражение в числителе и выражение в знаменателе. Мы видим, что в числителе нужно раскрывать скобки и возводить в четвертую степень: , чего делать совершенно не хочется. А для тех, кто не знаком с биномом Ньютона, эта задача окажется ещё сложнее. Проанализируем старшие степени: если мы вверху раскроем скобки , то получим старшую степень . Внизу у нас такая же старшая степень: . По аналогии с предыдущим примером, очевидно, что при почленном делении числителя и знаменателя на у нас в пределе получится единица. Или, как говорят математики, многочлены и – одного порядка роста. Таким образом, вполне можно обвести отношение простым карандашом и сразу указать, что эта штука стремится к единице. Аналогично расправляемся со второй парой многочленов: и , они тоже одного порядка роста, и их отношение стремится к единице. На самом деле, такую «халтуру» можно было провернуть и в Примере № 1, но для многочлена 2-й степени такое решение смотрится всё-таки как-то несолидно. Лично я поступаю так: если есть многочлен (или многочлены) первой или второй степени, я использую «длинный» способ решения Примера 1. Если попадается многочлен 3-й и более высоких степеней, я использую «турбо»-метод по образцу Примера 2. Пример 3 Исследовать ряд на сходимость Полное решение и образец оформления в конце урока Рассмотрим типовые примеры с факториалами: Пример 4 Исследовать ряд на сходимость В общий член ряда входит и степень, и факториал. Ясно, как день, что здесь надо использовать признак Даламбера. Решаем. Пример 5 Исследовать ряд на сходимость Полное решение и образец оформления в конце урока Пример 6 Исследовать ряд на сходимость Иногда встречаются ряды, которые в своей начинке содержат «цепь» множителей, этот тип ряда мы еще не рассматривали. Как исследовать ряд с «цепочкой» множителей? Использовать признак Даламбера. Но сначала для понимания происходящего распишем ряд подробно: Из разложения мы видим, что у каждого следующего члена ряда добавляется дополнительный множитель в знаменателе, поэтому, если общий член ряда , то следующий член ряда: Примерный образец решения может выглядеть так: Используем признак Даламбера: Пример 7 Исследовать ряд на сходимость Мы видим, что дробь полностью находится под степенью, зависящей от «эн», а значит, нужно использовать радикальный признак Коши: (1) Оформляем общий член ряда под корень. (2) Переписываем то же самое, только уже без корня, используя свойство степеней . (5) Выполняем почленное деление, и указываем слагаемые, которые стремятся к нулю. А вот более простой пример для самостоятельного решения: Пример 8 Исследовать ряд на сходимость И еще пара типовых примеров. Полное решение и образец оформления в конце урока Пример 9 Исследовать ряд на сходимость (1) Помещаем общий член ряда под корень. (2) Переписываем то же самое, но уже без корня, при этом раскрываем скобки, используя формулу сокращенного умножения: . (5) Собственно выполняем почленное деление и указываем, какие слагаемые у нас стремятся к нулю. Прямо таки бесконечно убывающая геометрическая прогрессия на пальцах =) (7) Указываем, что и делаем вывод о том, что ряд сходится.
|
Последнее изменение этой страницы: 2020-02-17; Просмотров: 119; Нарушение авторского права страницы