Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лекция №1. Введение. Современное состояние освоения морских месторождений.



Лекция №2. Особенности разработки морских нефтяных и газовых месторождений.

 

Континентальный шельф, или материковая отмель, в геологическом отношениии

топографическом отношении представляет собой продолжение суши в сторону моря. Это зона вокруг континента от уровня малой воды до глубины, на которой резко меняется уклон дна. То место, где это происходит называется кромкой континентального шельфа. Обычно кромку условно распологают на глубине 200м, но известны случаи, когда резкое увеличение уклона происходит на глубине более 400м или менее 130м. В тех случаях, когда зона ниже уровня малой воды крайне нерегулярна и в ней встречаются глубины, намного превыщающие типичные для континентального шельфа, применяют термин «бордерленд».

Как показывает опыт освоения нефтегазовых ресурсов шельфов морей и океанов, несмотря на большие капитальные вложения добыча углеводородного сырья из морских месторождений дает значительную выгоду. Прибыли от продажи нефти и газа, добытых на шельфе, прекрывают расходы в 4 раза. Затраты на поисково-разведочные работы в акваториях составляют от 10до 20 % от общих щатрат на освоение морских месторождений.

Общие капитальные вложения в разработку морских месторождений нефти и газа зависят от климатических условий, глубины и отдаленности месторождение от береговых баз обслуживания, от извлекаемых запасов месторождения, дебитов скважин, и наконец от научно-технического прогресса в области автоматизации всего процесса бурения, обустройства морских промыслов, добычи, промыслового сбора, подготовки и транспортировки нефти и газа в морских условиях.

К особенностям освоения морских нефтегазовых месторождений можно отнести следующие:

- создание, с учетом суровых морских гидрометереологических условий6 специальных гидротехнических сооружений новых плавучих технических средств (плавувучих крановомонтажных судов, судов обслуживания, трубоукладочных барж и других специальных судов) для геофизических, геологопоисковых работ и строительства нефтепромысловых объектов на море и их обслуживания в процессе обустройства, бурения, эксплуатации и ремонта скважин, а также при сборе и транспорте их продукции;

- бурение наклонного-направленного куста скважин с индивидуальных стационарных платформ, с приэстакадных площадок, на исскуственно создаваемых островках, с самоподьемных и полупогружных плавучих установок и других сооружений как над водой, так и под водой.

- выбор при проектировании наиболее рациональной для данного месторождения или залежи сетки скважин, которая должна иметь такую плотность, чтобы не требовалосьее уплотнения, так как оно в морских условиях связано с чрезвычайно большгими трудностями из-за уже существующей системы обустройства месторождения и сети подводных коммуникаций, когда размещение новых гидротехнических сооружения для бурения дополнительных скважин может оказаться невозможным.

- выбор рациональных конструкций и числа стационарных платформ, приэстакадных площадок, плавучих эксплуатационных палуб и других сооружений для размещения на них оптимального числа скважин ( в зависимости от залегания пластов, сроков проводки скважин, растояние между их устьями, их дебитов, ожидаемых при имеющихся устьевых давлениях, и т.д.).

- соответствие долговечности и надежности гидротехнических и других сооружений срокам разработки нефтяных и газовых месторождений т.е. периоду максимального извлечения нефти из залежи и всего месторождения в целом.

- Форсирование строительства скважин созданием надежной техники и прогрессивной технологии для бурения наклонно-направленных прицельных скважин с необходимым отклонением от вертикали и обеспечением автономности работы буровых бригад ( чтобы их работа не зависела от гидрометеорологических условий моря) в стесненных условиях платформ, приэстакадных и других площадок, что позволяет за короткий срок завершить разбуривание всех запроектированных скважин и только после этого приступить к их освоению, исключая необходимость в одновременном бурении и эксплуатации скважин.

 

Факторы, осложняющие разработку морских месторождений

Существует множество различных факторов, так или иначе осложня­ющих разработку залежей природных углеводородов и снижающих ее эффективность. Последнее в гораздо большей степени относится к нефтяным, нежели к газовым и газоконденсатным месторождениям. Наиболее важными из таких факторов являются:

o неоднородность фильтрационно-емкостных свойств залежи по простиранию и вкрест простиранию;

o неблагоприятное соотношение подвижностей фильтрующихся в пласте фаз;

o гравитационное разделение фаз, приводящее к преимуществен­ной фильтрации газа по верхней части пласта, и воды по его нижней части;

o образование водяных и газовых конусов.

Все эти факторы, проявляющиеся отдельно или вместе, приводят к низкому макроскопическому (т.е. проявляющемуся в пределах всей залежи) охвату пластов воздействием и, как следствие, к низкой нефтеотдаче. Другим фактором, влияющим на нефтеотдачу, являет­ся эффективность вытеснения нефти водой. Этот фактор часто на­зывают микроскопическим коэффициентом охвата.

Образование целиков нефти (т.е. зон, из которых нефть практи­чески не вытесняется) часто связано с процессом вытеснения не­фти водой или газом из неоднородных по проницаемости пластов. Этот эффект существенно возрастает в случае вытеснения высоко­вязких нефтей, при котором неблагоприятное соотношение под­вижностей вытесняющей (вода, газ) и вытесняемой (нефть) фаз становится более очевидным. Неоднородность пласта по проницае­мости при этом приводит к образованию так называемых языков обводнения, которые, обходя участки пласта с низкой проницае­мостью, оставляют за собой зоны с нефтенасыщенностью, суще­ственно выше остаточной, и потому называемые целиками.

Образование водяных и газовых конусов.

В условиях статического равновесия, т.е. до начала процесса вытес­нения, газ, нефть и вода в пластах распределены в соответствии с их плотностями. В случае наличия свободного газа он располагается в верхней части структуры, образуя так называемую газовую шап­ку, за которой следует нефтенасыщенная часть пласта или нефтя­ная зона, подстилаемая подошвенной водой.

В процессе добычи это равновесие нарушается из-за создания гра­диентов давления, принимающих особенно высокие значения в призабойной зоне добывающих скважин. Наличие высоких гради­ентов давления приводит к изменению формы условных границ разделов фаз (т.е. водо-нефтяного и газо-нефтяного контактов), заставляя их изгибаться в сторону перфорационных отверстий сква­жины, через которые осуществляется добыча. При превышении градиентами давления (или перепадом давления между скважиной и пластом) определенного уровня может наступить прорыв воды и/или газа в скважину, в результате которого дебит нефти может резко сократиться, а добыча газа и/или воды стать неоправданно большой. Рис. 3 может служить в качестве иллюстрации подоб­ного процесса образования водяного конуса.

Из-за более высокой подвижности газа и воды по сравнению с нефтью конусообразование может привести к дальнейшему сокра­щению охвата пласта процессом вытеснения и ухудшению условий добычи нефти (высокий газовый фактор, высокая обводненность добываемой продукции, низкий дебит по нефти и т.п.).

Низкий коэффициент охвата пласта воздействием

Как уже было отмечено выше, сочетание неоднородности фильтрационно-емкостных свойств пласта с неблагоприятным соотно­шением подвижностей и плотностей фильтрующихся в нем фаз приводит к низкому охвату пласта воздействием и не позволяет, как правило, добиться высоких показателей разработки.

 

Рис.3.- Процесс образования водяного конуса: а— стационарное распреде­ление фаз, предшествующее добыче; б— первая стадия образования конуса: искривление поверхности ВНК; в— прорыв конуса к перфорационным отверстиям, начало одновременной добычи нефти и воды.

Осн.: 1. [7-11], 4. [161-164]

Доп.: 7. [15-17]

Контрольные вопросы:

1. Понятие о континентальном шельфе?

2. От чего зависят общие капитальные вложения?

3. Что вы понимаете под словом «кромка»?

4.В чем отличается разработка шельфовых месторождений от разработки месторождений на суше?

5.Что такое целики нефти?

6. Как образуются водяные и газовые конусы?

7. Каким должен быть коэффициент охвата пласта воздействием?

 

Лекция №3. Поисково-разведочные работы на шельфе (геофизика).

Якорные системы удержания

Буровое плавсредство и систему заякоривания рассматривают как единый комплекс, за исключением случаев экстремальных погодных условий.

Система заякоривания включает якорные цепи, лебедку, стопорное устройство, роульс (устройство для изменения направления перемещения якорного троса). В зависимости от местных условий, характеристики бурового плавсредства и других факторов применяют различные схемы расположения якорных цепей или канатов относительно ПБС.

На рис. 15 показаны шесть наиболее распространенных в мировой практике вариантов заякоривания при воздействии нагрузок с любой стороны; n- число якорных канатов.

Якорные цепи или тросы выбирают в зависимости от ожидаемой нагрузки на них, глубины моря, характеристики рабочего оборудования, стоимости, наличия пространства для палубных устройств и других факторов.

 

Рис. 15- Типовых вариантов систем заякоривания: а, б, в – симметричные системы соответственно с n-9, 8, 10; г, д, е – системы с якорными канатами (n =8), расположенными соответственно под углом 45-900 друг к другу, порд углом 30-700 к оси платформы и под углом 30-600 к продольной оси судна

Для заякоривания применяют два типа плоскозвенных цепей с распоркой: цепь со сваренным встык звеньями и замковую цепь. В большинстве случаев для заякоривания применяют металлические канаты диаметром 57-76 мм (иногда 90мм). Преимущества металлических канатов: масса каната в морской воде ниже стоимости цепи. Недостаток металлического каната заключается в том, что вследствие малой массы требуется большое развертывание троса до необходимой величины тангенциальной кривой провисания, а также в случае выхода каната из строя его следует заменять по всей длине.

Якорные системы оснащают комплексом оборудования для регулирования натяжения якорных канатов, который включает тензометры и записывающую аппаратуру, непрерывно управляющую натяжением якорного каната и извещающую оператора об изменении высоты волны или направления ветра.

Системой управляют с пульта на основе информации, получаемой от датчиков, устанавливаемых на тросах.

Условия бурения на море

На процесс бурения скважин на море влияют естествен­ные, технические и технологические факторы (рис.16). Наи­большее влияние оказывают естественные факторы, опреде­ляющие организацию работ, конструктивное исполнение техники, ее стоимость, геологическую информативность бу­рения и т.п. К ним относятся гидрометеорологические, гео­морфологические и горно-геологические условия.

Гидрометеорологические условия характеризуются волне­нием моря, его ледовым и температурным режимами, коле­баниями уровня воды (приливы —отливы, сгоны — нагоны) и скоростью ее течения, видимостью (туманы, низкая облач­ность, метели, осадки).

Для большинства морей, омывающих берега России (Японское, Охотское, Берингово, Белое, Баренцево, Татар­ский пролив), характерна следующая средняя повторяемость высоты волн, %: до 1, 25 м (3 балла) - 57; 1, 25 — 2, 0 м (4 бал­ла) - 16; 2, 0—3, 0 м (5 баллов) - 12, 7; 3, 0—5, 0 (6 баллов) -10. Средняя повторяемость высоты волн до 3, 0 м в Балтий­ском, Каспийском и Черном морях составляет 93 %, 3, 0 — 5, 0 м - 5 %.

Для бурения на акваториях опасны отрицательные темпе­ратуры воздуха, вызывающие обледенение бурового основа­ния и оборудования и требующие больших затрат времени и труда на приведение в готовность силового оборудования по­сле отстоя.

Ограничивает время бурения на море также снижение ви­димости, которое в безледовый период чаще отмечается в ночные и утренние часы.

Геоморфологические условия определяются очертаниями и строением берегов, топографией и почвой дна, удаленностью точек заложения скважин от суши и обустроенных портов и т.п. Для шельфов почти всех морей характерны малые укло­ны дна. Изобаты с отметкой 5 м находятся на расстоянии 300—1500 м от берега, а с отметкой 200 м — 20 —60 км. Од­нако имеются желоба, долины, впадины, банки.

Почва дна даже на незначительных площадях неоднородна. Песок, глина, ил чередуются со скоплениями ракушки, гра­вия, гальки, валунов, а иногда и с выходами скальных пород в виде рифов и отдельных камней.

На первой стадии освоения морских месторождений твер­дых полезных ископаемых основным объектом геологичес­кого изучения являются участки в прибрежных районах с глубинами акваторий до 50 м. Это объясняется меньшей сто­имостью разведки и разработки месторождений на меньших глубинах и достаточно большой площадью шельфа с глуби­нами до 50 м.

Рис. 16.- Факторы, влияющие на эффективность бурения скважин на море

 

Требования к бурению разведочных скважин на море

Наибольшее распространение на море получили бурильные трубы нефтяного сортамента диа­метром 0, 127 м. Соответственно диаметр скважины не может быть меньше 0, 132 м.

Установленные геологические разрезы и глубины разведы­ваемых акваторий, геолого-методические и эксплуатационно-технические требования к бурению скважин рассмотрен­ных целевых назначений определяют следующие их пара­метры:

Максимальная глубина скважины, м:

по воде/по породам.............................................. 300/300

Диаметр скважины в рыхлых отложениях, м:

максимальный................................................... 0, 325/0, 351

минимальный................................................... 0, 146/0, 166

Диаметр скважины в коренных породах, м: ;

максимальный................................................. 0, 131

минимальный................................................... 0, 059

 

Основная зона шельфа, разведываемая геологами, состав­ляет полосу шириной от сотен метров до 25 км. Удаленность точек заложения скважин от берега при бурении с ледового припая зависит от ширины припайной полосы и для аркти­ческих морей достигает 5 км.

Горно-геологические условия характеризуются в основном мощностью и физико-механическими свойствами горных пород, пересекаемых скважиной. Отложения шельфа обычно представлены рыхлыми породами с включением валунов. Ос­новными составляющими донных отложений являются илы, пески, глины и галька. В различных соотношениях могут об­разовываться отложения песчано-галечные, суглинки, супеси, песчано-илистые и т.д. Для шельфа дальневосточных морей породы донных отложений представлены следующими вида­ми, %: илы — 8, пески — 40, глины — 18, галька — 16, про­чие — 18. Валуны встречаются в пределах 4 —6 % в разрезе пробуренных скважин и 10—12 % скважин от общего их ко­личества.

Ударный способ бурения

Ударный способ бурения в зависимости от способа отбора керна подразделяют на: ударный сплошным забоем, клюющий кольцевым забоем и ударно-забивной или просто забивной кольцевымзабоем.

Ударное бурение сплошным забоем заключается в разру­шении пород забоя долотами, удалении продуктов разруше­ния желонками и получении образцов пород в виде шлама. Ударное бурение сплошным забоем на море переходят только при необходи­мости разрушения встречающихся валунов и крепких по­род.

Клюющий способ бурения заключается в том, что буровой снаряд, включающий жестко соединенные между собой керноприемный стакан и утяжеленную трубу, сбрасывают на забой с некоторой высоты; стакан углубляется в породу, за­тем снаряд поднимают на поверхность для отбора керна из стакана. Величина углубления стакана в породы в рейсе зави­сит от энергии удара снаряда о забой. При бурении этим способом на море достичь значений энергии удара, достаточ­ных для погружения стакана в породы на глубину хотя бы 0, 1—0, 2 м, трудно, так как буровой снаряд движется в сква­жине, заполненной водой, и испытывает большие гидравли­ческие сопротивления движению. Поэтому на море этот спо­соб бурения не применяют.

Основной разновидностью ударного бурения в рыхлых породах на море является забивной способ, обеспечивающий получение образцов пород в виде керна. Отбор керна при этом осуществляется нанесением ударов по трубчатому керноприемнику, снабженному упроченным кольцевым башма­ком, который выполняет роль породоразрушающего инстру­мента. Выход керна при отборе его из обсадной колонны забивными керноприемниками примерно такой же, как и при отборе, его вдавливаемыми грунтоносами.

Таким образом, наибольший выход керна рыхлых пород на море имеет место при вдавливающем способе бурения со скоростью погружения обсадных труб и грунтоносов в породы менее 0, 02 м/с и всего на 3—4 % меньше при забивном способе со скоростью погружения обсадных труб и забивных керноприемных снарядов в породы более 0, 16 м/с.

Однако ударно-забивной способ позволяет бурить разве­дочные скважины любых необходимых диаметров в рыхлых, крепких и перемежающейся крепости породах. Бурение вдавливанием экономически оправдано только диаметром до 0, 108 м и только в рыхлых отложениях без включения гальки и валунов и поэтому не вполне отвечает обобщенным ГМТ, предъявляемым к бурению разведочных скважин.

При бурении многих видов разведочных скважин требует­ся внедрение в коренные породы (структурные, разведочные на россыпи, уголь и т.д.). Выбуривание керна из таких пород возможно только вращательным способом. Это единствен­ный способ производительного бурения, обеспечивающий получение качественного керна в твердых и крепких поро­дах. Во многих условиях вращательный способ является не­заменимым при инженерно-геологических изысканиях, так как позволяет получать колонки керна мягких и твердых по­род без существенного искажения их природных физико-механических свойств.

Рис.17-Последовательность выполнения операций в рейсе при погружении колонны обсадных труб в породы и отборе керна из них новыми конструкциями забивного снаряда и забивного керноприемника: а - погружение в породы обсадной колонны; б - сбрасывание керноприемного стакана на забой скважины; в - спуск в скважину ударной штанги и погружение стакана в породы; г - извлечение штанги из скважины и настройка ловителя на захват стакана; д - спуск ударной штанги с ловителем в скважину, захват стакана и подъем их на поверхность; 1 - обсадная колонна труб; 2 - забивной снаряд; 3 - стакан керноприемный; 4 - ударная штанга; 5 - заблокированный ловитель.

 

Вращательное бурение

Бурение вращателями роторными и перемещаемыми в вертикальных направляющих вышки. В условиях качки ПБУ наиболее сложно вращательное бурение станками шпиндель­ного типа. Существующие у них системы принудительных подач, подвески и разгрузки инструментов для условий моря непригодны, так как качка и дрейф ПБУ при жесткой связи ее со станком и последнего с бурильной колонной приводят к изгибам и поломкам труб вследствие смещения оси кронблока от оси скважины, периодическим отрывам буро­вого снаряда от забоя, утрате и разрушению керна, невоз­можности поддерживать необходимые режимы бурения. С целью повышения эффективности бурения с ПБУ вращательным способом отечественными и зарубежными специа­листами предложен ряд конструктивно-технологических ре­шений.

В АО " Дальморгеология" для бурения с плавсредств разра­ботаны и применяются в производстве два типа вращателей: ВМБ-5 на базе ротора от буровой установки УРБ-3 и пере­мещаемый в вертикальных направляющих вращатель от бу­рового комплекса КГК-100. При отсутствии дрейфа, боковой и продольной качки ПБУ базовые варианты этих вращателей позволяют почти беспрепятственно перемещаться в верти­кальном направлении плавсредству вместе с ротором и на­правляющими относительно бурового снаряда.

Опыт бурения вращателями описанных конструкций по­казал, что при волнении моря более 2 баллов на забой не передается заданная осевая нагрузка, так как ведущая ВМБ-5 заклинивается в роторе, а подвижной вращатель КГК-100 — в направляющих. Так как при бурении этими вращателями бурильная колонна обычно подвешена на тросе лебедки, же­стко соединенной с плавсредством, его качка приводит к пе­риодическим отрывам бурового снаряда от забоя, разрушает керн и не позволяет поддерживать необходимую осевую на­грузку на породоразрушающий инструмент.

Такие же трудности отмечаются при бурении в сложных гидрологических условиях моря с применением силового вертлюга, используемого для вращения бурильной колонны. Эта схема принципиально схожа со схемой бурения враща­телем от КГК-100.

Общий недостаток вращателей, устанавливаемых на вра­щаемой обсадной колонне, — большие потери времени и труда на приведение в каждом рейсе вращателя в рабочее положение и на разворот извлекаемых из скважины обсад­ных труб, резьбовые соединения которых при вращательном бурении сильно затягиваются.

Жесткие МСП

 

Морские стационарные платформы, закрепляемые сваями МСП пирамидального типа

МСП, закрепляемые сваями, представляют собой гидротехни­ческое металлическое стационарное сооружение, состоящее из опорной части, которая крепится к морскому дну сваями, и верхнего строения, оснащенного комплексом технологического оборудования и вспомогательных средств и устанавливаемого на опорную часть МСП.

Опорная часть может быть выполнена из одного или несколь­ких блоков в форме пирамиды или прямоугольного параллеле­пипеда. Стержни решетки блока изготовляют в основном из металлических трубчатых элементов. Количество блоков опор определяется надежностью и безопасностью работы в данном конкретном районе, технико-экономическими обоснованиями и наличием грузоподъемных и транспортных средств на заводе — изготовителе опорной части МСП.

На рис. 21 а, б, в даны схемы МСП, применяемые на Кас­пийском море. Ниже приведены краткие технические данные морской стационарной платформы для одновременного бурения скважин двумя буровыми установками на месторождении им. 28 апреля на глубине 100 м. Платформа состоит из двух опор­ных блоков, установленных на расстоянии 31 м друг от друга, и трехпалубного верхнего строения, которое включает 14 моду­лей, в том числе: два подвышечных, шесть модулей нижней палубы с эксплуатационным оборудованием 450 т каждый, шесть модулей верхней палубы с буровым оборудованием до 600 т каждый.

На платформе размещен комплекс технологического и вспо­мога-тельного оборудования, систем, инструмента и материалов, обеспечивающих бурение скважин двумя буровыми установ­ками.

Платформа оснащена блочными жилыми и бытовыми помеще­ниями, вертолетной площадкой, погрузочно-разгрузочными кра­нами и др.

С платформы предусмотрено бурение 12 скважин.

 

Размер в плане, мм: Масса, тыс. т:

производственной площад- платформы.............. 12, 1

ки......................................... 71 Х50 опорного блока....... 2, 04

опорного блока.......................... 16 X 49

 

Опорные блоки крепятся к морскому грунту сваями. На опорные блоки устанавливается верхнее трехпалубное строе­ние с модулями, оснащенными соответствующими технологи­ческим и вспомогательным оборудованием и системами.

Как известно, затраты на обустройство морских нефтегазовых ме­сторождении составляют свыше 50 % всех капиталовложений. Дос­таточно сказать, что стоимость отдельных нефтегазопромысловых платформ достигает 1—2 млрд долл.

Например, эксплуатирующая­ся в настоящее время глубоководная гравитационная платформа для месторождения Тролль в Северном море оценивается в сумму свыше 1 млрд долл. Затраты на прокладку современного глубоко­водного магистрального трубопровода составляют 2—3 млн долл. за километр. Каждый новый этап в освоении шельфа вызывает к жизни новые технические решения, соответствующие возникающей проблеме. Разработан целый спектр технических средств освоения шельфа, выбор которых определяется совокупностью технологических, гео­лого-, гидрометеорологических, экономических, политических и других условий.

 

Рис. 22 Современные глубоководные платформы, используемые для разработки шельфовых нефтегазовых месторождений

. Так, например, для выполнения работ по развед­ке, бурению скважин и добыче нефти и газа используются раз­личные типы технических средств, изображенных на рис.22.

Среди инженерных компаний, успешно работающих в области со­здания новой техники и морских нефтегазовых сооружений, при­оритетные позиции занимают «Браун энд Рут», «Мак-Дермот», «Квернер», «Аккер» и др.

Советский опыт в этой области накоплен организациями Азер­байджана, где институт Гипроморнефтегаз спроектировал, а Ба­кинский завод глубоководных оснований изготовил и установил более десяти металлических платформ на глубинах около 100 м. Институтом ВНИПИШельф разработаны платформы высотой около 30 метров для газовых месторождений Крыма. Морские трубопроводы диаметром до 500 — 700 мм проложены на Кас­пийском и Черном морях и на Дальнем Востоке через Татарский пролив.

Гравитационные морские стационарные платформы (ГМСП)

Гравитационные МСП отличаются от металлических свайных МСП как по конструкции, материалу, так и по технологии из­готовления, способу их транспортировки и установки в море.

Общая устойчивость ГМСП при воздействии внешних нагру­зок от волн и ветра обеспечивается их собственной массой и массой балласта, поэтому не требуется их крепление сваями к морскому дну. ГМСП применяют в акваториях морей, где проч­ность основания морского грунта обеспечивает надежную устой­чивость сооружения.

 

 

Рис. 23-Схема платформы типа «Кондип»: 1 — емкость с топливом; 2 -- стенки ячейки; 3 — верхняя крышка; 4 — опора хозяйственного оборудования; 5 — верхнее строение; 6 — буровая опорная колонна; 7 — хранилище нефти; 8 — нижняя крыш­ка; 9 — балласт; 10 — стальная юбка; 11 — штифт  

ГМСП — очень массивные объекты, состоящие из двух час­тей: верхнего строения и опорной части. Опорная часть состоит из одной или нескольких колонн, изготовляемых из железобетонa. Колонны цилиндрической или конической формы опираются на многоячеистую монолитную базу (рис.23)


База относительно неболь­шой высоты по сравнению с колоннами, состоит из ячеек-пон­тонов, жестко связанных между собой, и заканчивается в ниж­ней части юбками с развитой общей опорной площадью на мор­ское дно. Размеры опорной многоблочной плиты бывают в длину 180 м и по ширине до 135 м.

Преимущество ГМСП — непродолжительное время установки их в море, примерно 24 ч вместо 7—12 мес, необходимых для установки и закрепления сваями металлических свайных плат­форм. Собственная плавучесть и наличие системы балластировки позволяют буксировать ГМСП на большие расстояния и устанав­ливать их в рабочее положение на месте эксплуатации в море без применения дорогостоящих грузоподъемных и транспортных средств. Преимуществом их также является возможность повторного использования на новом месторождении, повышенные огнестойкость и виброустойчивость, высокая сопротивляемость морской коррозии, незначительная деформация под воздействием нагрузок и более высокая защита от загрязнения моря.

ГМСП применяют в различных акваториях Мирового океана. Особенно широко они используются в Северном море.

К недостаткам гравитационных платформ относится необходимость тщательной подготовки места их установки. Особое внимание следует уделять на опасность аварий, которые могут возникнуть при разжижении грунта, его поверхностной и внутренней эрозии, местных размывах.

Осн.: 2. [78-87], 5. [ 443-446],

Доп.: 7. [964-970 ], [985-987 ]

Контрольные вопросы:

1. В чем назначение платформ?

2. Какие виды платформ вы знаете?

3. Расскажите про преимущества ГМСП.

4.Для каких условий применяют ГМСП?

5. Назовите недостатки ГМСП.

 

Упругие МСП

Обычно при проектировании МСП статическую прочность конструкции рассчитывают на действие максимальных нагрузок, повторяющихся один раз в 100 лет, и производят поверочный расчет на динамические и циклические нагрузки.

Упругой башней называют относи­тельно тонкую стальную пространственную ферму из стержней с довольно равномерным по высоте расстоянием между горизон­тальными поясами.

К классу упругих башен относят находящуюся в эксплуата­ции в Мексиканском заливе на глубине 305 м МСП «Лена». Конструкция ее представляет собой ферму квадратного сечения со стороной квадрата 36, 6 36, 6 м, высотой 320 м и массой 21 тыс. т. В верхней части фермы имеется 16 опор диаметром 1220 мм, на которых установлено верхнее строение. Нижняя часть башни имеет 12 таких опор. В пределах верхней половины башни размещены 12 понтонов диаметром 6, 1 м, длиной 36, 6 м, обеспечивающие 9100 т плавучести. Понтоны стабилизируют платформу, уменьшают давление на фундамент, значительно об­легчают монтаж платформы и оттяжек.

Используя опыт эксплуатации МСП «Лена», фирма «Эксон» изучила шесть проектов глубоководных МСП, разработанных специалистами фирмы. Нагрузки от окружающей среды и гра­витационные, действующие на МСП «Лена», распределяются на сваи, оттяжки, инерционность конструкции и понтоны. Перерас­пределяя эти нагрузки на перечисленные узлы конструкции, можно достичь оптимального варианта решения конструкции. Например, вес палубы можно передать на сваи или компенси­ровать подъемной силой понтонов. Понтоны, кроме этого, ком­пенсирую горизонтальные силы, обеспечивая устойчивость платформы, уменьшают или полностью снимают нагрузки на оттяжки. Инерция основания увеличивает период боковых колебаний, снижает их амплитуду и соответственно снижает динамические на­грузки на оттяжки и сваи.

Рис. 24-Схема распределения нагрузок между основными элементами конструкции упругих башен

 

Разница в вариантах проектов упругих башен заключается в способах, которыми достигается заданный период колебаний, и оп­ределяется волновыми нагрузками, их воздействие перераспреде­лялось между основными элементами конструкции (рис. 25).

Гибкая башня рассматривалась как вариант обычной свайной ферменной конструкции, у которой основание закреплено, а жест­кость фермы уменьшена настолько, чтобы достигался большой пе­риод основных колебаний гибкого стержня.

 

Рис. 25-Схемы упругих платформ: 1 — башня с оттяжками; 2 — плавучая башня; 3 — башня с оттяжками и жестким основанием; 4 — гибкая башня; 5 — упругая свайная башня; 6 — упругая свайная башня с жестким основанием

 

Период вторичных ко­лебаний должен быть небольшим, чтобы обеспечить стойкость к усталостным разрушениям. Под периодом основных колебаний гибкого стержня понимается период поперечных колебаний, а под периодом вторичных колебаний гибкого стержня — период изгибных колебаний.

Рис. 26-Крепление свай к опорам платформы: 1 — свая, приваренная к направляющей втулке; 2 — свая свободно проходит через направляющую втулку; 3 — узел крепления направляющей втулки к главной опоре; 4 — нижняя удлиненная направляю­щая втулка

 

Период поперечных ко­лебаний задавался 25 с. Максимальный период изгибных колеба­ний выбирался около 7 с. При этом обеспечивалась стойкость к усталостному разрушению в условиях Мексиканского залива.


 

Рис. 27-Схема платформы РВР: 1 — палуба массой 30 тыс. т; 2 — крепление осевых свай на отметке + 10 м; 3 — сочленение верхней и нижней секций (плоскость сочленения): 4 — балластные камеры; 5 — нижние понтоны; 6 — верх­ние понтоны; 7 — 26 периферийных свай, воспринимающих горизонтальную нагрузку и работающих на срез; 8 — семь осевых свай; 9 — 20 опор переменного сечения  

Башня (рис.27)общей высотой 372 м, прямоугольного сечения 58 44 м состоит из 20-ти опор переменного сечения 9 от 2012 мм в нижней части до 1524 мм в верхней части. Фундамент башни поднят над морским дном на 3 м. Башня состоит из двух секций. Верхняя секция длиной 155 м имеет 10 понтонов 6 размерами 14, 6 80 м, и нижняя секция длиной 217 м имеет 6 понтонов размерами 14, 6 20 м. Верхние понтоны расположены на 30 м ниже уровня моря. Они предотвращают колебания башни с периодом более 6 с. Десять балластных камер (понтонов) 4 размерами 14, 6 20 снижают плавучесть всей платформы до нейтральной. Семь осевых свай 8 диаметром 1220 мм заглуб­лены на 110 м и возвышаются над морским дном на 360 м. Они привариваются к опорам башни на расстоянии 10 м от уровня моря 2. Количество и диаметр осевых свай выбраны из расчета обеспечения требуемой осевой жесткости, существенно снижа­ют период вертикальных колебаний, но не должны иметь зна­чительной жесткости при кручении.

26 периферийных свай диаметром 2134 мм воспринимают гори­зонтальные нагрузки и работают на срез. Они заглублены в мор­ское дно на 50 м. Расчетный период собственных колебаний башни по оси х составляет 65, 2 с и по оси у — 52, 2 с, что значительно боль­ше возможного периода волн. Первый период изгибных колебаний по обеим осям менее 4 с, что указывает на невозможность динами­ческой раскачки, так как волны с периодом менее 6 с большую на­грузку не создают.

При максимальной штормовой нагрузке высота волн достигает 30 м, период волн 15 с, скорость течения меняется от 1, 2 до 0, 6 м/с у дна, скорость ветра на палубе 40 м/с. При минимальных скоростях ветра и течения башня отклоняет­ся от вертикали на 1, 12° и при волнении — на 2, 52° (это такие же отклонения, что и у башни «Лена»).


Максимальные перемещения фундамента башни 680 мм. С уче­том этого для изготовления башни рекомендуется использовать сталь с пределом текучести 346 МПа. На уровне дна в сва­ях возникают более высокие на­пряжения, и для свай рекомен­дуется сталь с пределом теку­чести 438 МПа. Секции башни транспортируются на место установки и собираются в го­ризонтальном положении.

Гравитационно-свайные МСП не сдвигаются с места уста­новки благодаря не только собственной массе конструкции, но и за счет дополнительного крепления сваями опорной их части к морскому дну. МСП этого типа бывают различных конструкций, как по конфигурации сооружения, так и сочетанию применяемых материалов.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 2809; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.097 с.)
Главная | Случайная страница | Обратная связь