Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Компьютерная модель обучения
Когда кибернетики исследовали паттерны связи и управления, стремление понять «логику разума» и выразить ее математическим языком постоянно оставалось в самом центре их внимания. Так, в течение более чем десяти лет ключевые идеи кибернетики развивались как увлекательное взаимодействие между биологией, математикой и техникой. Подробные исследования нервной системы человека привели к осмыслению модели мозга как логической схемы с нейронами в качестве ее основных элементов. Эта концепция стала решающим шагом к изобретению цифровых компьютеров, что, в свою очередь, обеспечило концептуальную основу нового подхода к исследованию психики. Изобретение Джоном фон Нейманном компьютера и его же гипотеза об аналогии между работой компьютера и мозга так тесно переплетены, что трудно отдать пальму первенства одному из этих событий. Компьютерная модель психической деятельности доминировала в когнитивной науке и в области исследований мозга на протяжении последующих тридцати лет. Основная идея заключалась в том, что человеческий интеллект подобен интеллекту компьютера до такой степени, что обучение — процесс познания — может быть определено как процесс обработки информации, т. е. как манипулирование символами, основание на некотором наборе правил27. Прямым следствием этой концепции явились интенсивные разработки искусственного интеллекта, и вскоре литературу заполонили неистовые пророчества о наступлении эры «компьютерного разума». Так, Герберт Саймон и Аллен Ньюэлл писали еще в 1958 году: Уже есть в мире машины, которые мыслят, обучаются и творят. Более того, эти их способности будут быстро совершенствоваться, пока — и это уже обозримое будущее — диапазон проблем, с которыми они могут справляться, не сравняется с той сферой, в которой до сих пор использовался человеческий разум28. Это предсказание сегодня так же абсурдно, как и 38 лет назад, и все же в него повсеместно верят. Энтузиазм ученых и общественности в отношении компьютера как модели человеческого мозга являет интересную параллель с энтузиазмом Декарта и его современников в отношении часового механизма как модели человеческого тела29. Для Декарта часы были уникальной машиной. Это была единственная машина, которая функционировала автономно, т. е. работала сама по себе будучи единожды заведенной. Это были времена французского барокко, когда часовые механизмы широко использовались для разработки искусных «одушевленных» механических игрушек, которые восхищали людей магией своих якобы спонтанных движений. Как и большинство его современников, Декарт был очарован этими автоматами и считал естественным сравнивать их работу с функционированием живых организмов: Мы наблюдаем часы, искусственные фонтаны, мельницы и другие подобные машины, которые, будучи всего лишь произведениями человека, обладают, тем не менее, способностью двигаться самостоятельно несколькими различными способами... Я не признаю никакой разницы между машинами, изготовленными ремесленниками, и различными телами, которые творит лишь одна природа30. Заводные часы XVII века были первыми автономными машинами, и в течение трехсот лет они оставались единственными машинами подобного рода — пока не появился компьютер. Компьютер — это опять нечто новое, неизведанная и уникальная машина. Он не только двигается автоматически (если его запрограммировать и включить в сеть); он делает нечто совершенно новое — обрабатывает информацию. И поскольку фон Нейманн и ранние кибернетики верили в то, что человеческий мозг тоже обрабатывает информацию, им представлялось естественным считать компьютер моделью мозга и даже разума, как для Декарта было естественным использовать часы в качестве модели тела. Подобно картезианской модели тела как заводных часов, модель мозга как компьютера поначалу представлялась весьма полезной. Она сулила волнующие перспективы для нового научного понимания обучения и открывала новые, свежие направления для исследований. К середине шестидесятых, однако, изначальная модель, которая воодушевила ученых на анализ ее же ограничений и обсуждение альтернатив, затвердела до состояния догмы; это нередко случается в науке. В течение последующего десятилетия почти всюду в нейробиологии доминировала концепция обработки информации; ни истоки, ни основные предположения этой концепции уже практически не подвергались сомнению. Ученые-компьютерщики внесли значительную лепту в бетонирование догмы об обработке информации, используя выражения типа «интеллект», «память» и «язык» для описания компьютеров, что побудило большинство людей — включая и самих ученых — думать, что эти понятия относятся к хорошо известным человеческим феноменам. Это, однако, оказалось глубоким заблуждением, которое помогает поддерживать и даже укреплять картезианский образ людей-машин. Последние достижения когнитивной науки принесли ясность: человеческий интеллект совершенно отличается от машинного, искусственного интеллекта. Нервная система человека не обрабатывает никакой информации (в том смысле, что готовые дискретные элементы существуют во внешнем мире и отбираются познающей системой), но взаимодействует с окружающей средой, непрерывно видоизменяя свою структуру31. К тому же нейробиологи обнаружили серьезные доказательства того, что человеческий интеллект, человеческая память и человеческие решения никогда не бывают полностью рациональными, зато всегда окрашены эмоциями — как мы хорошо знаем из собственного опыта32. Наше мышление всегда сопровождается телесными ощущениями и процессами. Мы, правда, нередко стараемся подавить их, но всегда думаем вместе со своим телом; а поскольку компьютеры не обладают подобными телами, сугубо человеческие проблемы всегда будут чужды их «разуму». Из этих соображений следует, что определенные задачи никогда не следует оставлять на откуп компьютерам, как об этом выразительно сказал Иозеф Вайценбаум в своей классической книге «Компьютерная мощь и человеческое благоразумие». К таким задачам относятся все те, которые требуют истинно человеческих качеств — мудрости, сострадания, уважения, понимания, любви. Поручив компьютерам решения и отношения, которые требуют этих качеств, мы сделаем нашу жизнь бесчеловечной. Вайценбаум пишет: Должна быть проведена граница, разделяющая человеческий и машинный разум. Если такой границы не будет, тогда проповедники компьютеризированной психотерапии просто превратятся в глашатаев новой эры, в которой человек — не что иное, как заводной механизм... Сама постановка вопроса — «Что известно судье (или психиатру) такого, что мы не можем сказать компьютеру? » — является чудовищной непристойностью33. Влияние на общество Благодаря своему родству с механистической наукой и тесным связям с военными, кибернетика с самого начала пользовалась очень высоким престижем в среде научного истэблишмента. С годами этот престиж рос одновременно с быстрым распространением компьютеров во всех слоях индустриального общества и радикальными переменами во всех сферах нашей жизни. Норберт Винер предсказывал эти перемены, которые часто, особенно в первые годы развития кибернетики, сравнивали со второй промышленной революцией. Более того, он отчетливо осознавал теневую сторону новых технологий, которые сам же помогал создавать: Те из нас, кто внес свой вклад в новую науку кибернетику... очутились в нравственной позиции, мягко выражаясь, не очень комфортной. Мы причастны к зарождению новой науки, в которую... входят и технические достижения, чреватые огромными возможностями для добра и для зла34. Давайте помнить, что автоматическая машина... это точный экономический эквивалент рабского труда. Любой труд, конкурирующий с рабским, должен принимать экономические условия рабского труда. Абсолютно ясно, что это породит ситуацию с безработицей, по сравнению с которой теперешний спад или даже депрессия тридцатых покажутся милой шуткой35. Анализируя эти и другие подобные высказывания Винера, нельзя не увидеть, что он проявлял гораздо больше мудрости и осмотрительности в оценке влияния компьютеров на общество, чем его последователи. Сегодня, сорок лет спустя, компьютеры и другие «информационные технологии», разработанные за этот период, быстро приобретают автономный и тоталитарный характер, изменяя наши основные понятия и исключая альтернативные мировоззрения. Как показали Нил Постмен, Джерри Мэндер и другие критики технологии, это типично для «мега-технологий», которые уже доминируют в индустриальных обществах всего мира36. В возрастающих масштабах все формы культуры подчиняются технологии, и именно технологические инновации, а не повышение благосостояния человечества стали синонимом прогресса. Духовное обнищание и утеря культурного разнообразия в результате чрезмерного использования компьютеров приобретают серьезный характер, особенно в области образования. Как это кратко формулирует Нил Постмен: «Когда для обучения используется компьютер, меняется смысл обучения»37. Применение компьютеров в системе образования часто превозносится как революция, которая в конечном счете преобразит все грани учебного процесса. Эта точка зрения энергично пропагандируется мощной компьютерной индустрией и побуждает учителей использовать компьютеры в качестве обучающего инструмента на всех уровнях — вплоть до детских садиков и других дошкольных учреждений! — даже не задумываясь о множестве пагубных эффектов, которые может повлечь за собой эта безответственная практика38. Применение компьютеров в школах основано на устаревшем представлении о человеческих существах как об информационных процессорах; тем самым укрепляются ошибочные механистические концепции мышления, познания и коммуникации. Информация представляется как основа мышления, тогда как в реальности человеческий разум думает посредством идей, а не информации. Как Теодор Рошак подробно показывает в своем «Культе информации», не информация создает идеи, а идеи создают информацию. Идеи представляют собой интегрирующие паттерны, которые возникают не из информации, а из опыта39. В компьютерной модели обучения знание рассматривается как свободное от контекста и системы ценностей и основанное на абстрактных Данных; на самом же деле всякое содержащее смысл знание контекстуально, причем большая часть его невербальна и имеет эмпирический характер. Подобным же образом, язык рассматривается как некий канал, по которому передается «объективная» информация. В действительности же, как красноречиво показывает К. Э. Бауэре, язык метафоричен и Передает невербальные сведения, постижимые в рамках культуры40. В этой связи важно еще отметить, что язык компьютерных инженеров и ученых полон метафор, заимствованных у военных, — «команда», «запуск», «цель» и т. п., — что вносит некоторое культурное смещение, укрепляет стереотипы и отстраняет определенные группы, включая большинство девочек школьного возраста, от полноценного участия в учебном процессе41. С этим связано еще одно тревожное обстоятельство — связь между компьютерами, насилием и милитаристской природой большинства компьютерных видеоигр. После тридцати лет господства в области исследований мозга и познания, после построения живучей и до сих пор распространенной технологической парадигмы, миф об обработке информации в конце концов стал подвергаться серьезным сомнениям42. Критические аргументы выдвигались еще на заре развития кибернетики. К примеру, утверждалось, что реальный мозг не подчиняется правилам; что в нем нет центрального логического процессора; что информация не хранится локально. Скорее, мозг функционирует на основе сплошной связности, хранит информацию в распределенном виде и проявляет способность к самоорганизации, которая совершенно отсутствует в компьютерах. Однако эти альтернативные идеи были оттеснены на периферию в интересах господствующего компьютерного мировоззрения — пока не возродились снова тридцать лет спустя, в 70-е годы, когда системные философы заинтересовались новым феноменом под многообещающим названием: самоорганизация. ПРИМЕЧАНИЯ К ГЛАВЕ 4 1.Wiener (1948). Эта фраза появляется в подзаголовке книги. 2.Wiener (1950), р. 96. 3.З.См. Heims(1991). 4. См. Varela и др. (1991), р. 38. 5.CM.Heims(1991). 6.CM.Heims(1980). 7.Цитируется там же, р. 73. 8.См. Сарга (1988), pp. 73ff. 9.См. ниже, с. 189 и далее. 10.См. Heims (1991), pp. 19ff. 11.Wiener (1950), p. 24. 12.См. Richardson (1992), pp. 17ff. 13.Цитируется там же, р. 94. 14.Cannon (1932). 15.См. Richardson (1992), pp. 5-7. 16.Говоря несколько более специальным языком, значки «+» и «-» называются полярностями, и правило гласит, что полярность петли обратной связи является произведением полярностей его причинных звеньев. 17.Wiener (1948), р. 24. 18.См. Richardson (1992), pp. 59ff. 19.См. там же, pp. 79ff. 20.Maruyama(1963). 21.См. Richardson (1991), p. 204. 22.См, ниже, с. 176. 23.Хайнц фон Форстер, частная беседа, январь 1994. 24.Ashby(1952), p. 9. 25. Wiener (1950), р. 32. 26.Ashby(1956), p. 4. 27.См. Varela et al. (1992), pp. 39ff. 28.Цитируется по Weizenbaum (1976), p. 138. 29.См. там же, pp. 23ff. 30.Цитируется по Capra (1982), p. 47. 31.См. ниже, с. 295. 32.См. ниже, с. 304. 33.Weizenbaum (1976), pp. 8, 226. 34.Wiener (1948), p. 38. 35.Wiener (1950), p. 162. 36.Postman (1992), Mander (1991). 37.Postman (1992), p. 19. 38.См. Sloan (1985), Kane (1993), Bowers (1993), Roszak (1994). 39.Roszak (1994), pp. 87ff. 40.Bowers (1993), pp. 17ff. 41.Cm. Douglas D. Noble, «The Regime of Technology in Education», in Kane (1993). 42.Cm. Varela et al. (1992), pp. 85ff. ЧАСТЬ III ЧАСТИ ГОЛОВОЛОМКИ Глава 5 МОДЕЛИ САМООРГАНИЗАЦИИ Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1011; Нарушение авторского права страницы