Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Система автоматического регулирования. Структурные схемы, элементный состав, выполняемые функции



 

Общие сведения о системах

В общем случае система автоматического регулирования (САР) предназначена для автоматического поддержания какого-либо параметра технологического процесса на заданном уровне или его изменения по какой-либо заданной программе. Например, необходимо поддерживать уровень жидкости в технологической емкости на заданном значении независимо от ее расхода, поддерживать температуру в топке сушильного барабана, для обеспечения требуемой влажности концентрата и т. д.

Технологический процесс или технологическое оборудование, в котором (или с помощью которого) реализуется тот или иной технологический процесс, называют объектом регулирования (рис. 1).

Рис. 1. К пояснению понятия объекта регулирования:

где y1…yi – входные регулирующие воздействия;

z1…zj – входные возмущающие воздействия;

f(t) – функция помех;

x1…xk – выходные показатели объекта регулирования

 

Технологические параметры, характеризующие состояние объекта или особенности протекания процесса, называют выходными регулируемыми параметрами объекта или выходными регулируемыми показателями. Физическая величина, с помощью которой регулируют (воздействуют) процесс, состояние технологического оборудования, с целью поддержания регулируемой величины на заданном уровне, или изменение по заданному закону, называют входными регулирующими воздействия (входными величинами).

В качестве регулирующего воздействия обычно рассматривают расходы вещества или энергии в объект. Входное регулирующее воздействие может изменяться системой регулирования оперативно и целенаправленно.

Связь между выходной регулируемой величиной и входным регулирующим воздействием называют каналом регулирования.

На объект всегда действуют другие входные воздействия, которые меняются случайным образом во времени, и которые не могут быть изменены оперативно по нашему желанию. Они в лучшем случае могут быть только измерены. Эти входные воздействия называют входными возмущающими воздействиями.

Кроме того, в качестве входных воздействий часто рассматривают входную функцию помех. Это тоже возмущающие воздействия, изменяющиеся случайным образом во времени, влияющие на выходные показатели, но которые не могут быть проконтролированы оперативно и тем более оперативно изменены.

Для того чтобы автоматическая система регулирования могла работать, она должна получать информацию о значении регулируемой величины. Эту информацию система получает от технического устройства, которое называют датчиком.

Датчик – это устройство, которое воспринимает измеряемую физическую величину и преобразует ее в сигнал (как правило, электрический или пневматический), удобный для передачи и обработки в системе регулирования.

Так, для измерения температуры служат датчики температуры (термосопротивления, термопары, пирометры); для измерения уровня жидких и сыпучих сред служат различные датчики уровня (поплавковые, ультразвуковые, радарные и т. д.); для измерения расхода жидких и газообразных сред служат различные датчики расхода (электромагнитные, ультразвуковые, радиоактивные) и другие.

Выходные сигналы датчиков – унифицированные токовые сигналы 0 - 5 мА, 0 - 20 мА, 4 - 20 мА, или сигналы напряжения.

Сигнал с датчика в системе автоматического регулирования поступает на вторичный прибор, который показывает измеренные значения регулируемой величины, и записывает его на диаграммной ленте (или диаграммном диске).

Вторичные измерительные приборы могут иметь и другие функциональные возможности. Они, например, могут сигнализировать предельные значения измеренной величины и иметь специальные преобразователи для передачи сигнала “далее”, на последующие элементы автоматической системы.

Сигнал, пропорциональный текущему значению измеренной величины, с преобразователя вторичного прибора поступает на элемент сравнения автоматического устройства, которое называют автоматическим регулятором. На вход элемента сравнения подается также сигнал, пропорциональный заданному значению регулируемой величины. Этот сигнал подается от устройства автоматического регулятора, которое называется задатчиком.

Если сигнал, пропорциональный текущему значению измеренной величины, не равен сигналу, поступающему от задатчика, то на вход устройства формирования выходного сигнала автоматического регулятора поступает сигнал, который называют сигналом рассогласования.

Устройство формирования выходного сигнала регулятора, в зависимости от функциональной зависимости, заложенной в него, формирует управляющее (регулирующее) воздействие.

Функциональная связь, по которой формируется выходной сигнал регулятора, называется законом регулирования.

Различают три типовых закона регулирования:

1) П (пропорциональный) y = k · x;

2) ПИ (пропорционально-интегральный) ;

3) ПИД (пропорционально-интегрально-дифференциальный)

,

где y – регулирующее воздействие;

k – коэффициент передачи регулятора;

x – рассогласование;

– время интегрирования;

– время дифференцирования (время предварения).

Выработанное регулятором регулирующее воздействие поступает на исполнительный механизм (ИМ), который соединен с устройством, предназначенным для изменения потока вещества или энергии в объект регулирования. Это устройство называется регулирующим органом (РО). В качестве регулирующих органов в системах автоматического регулирования могут быть:

1) регулирующие шиберы;

2) регулирующие клапаны;

3) регулирующие заслонки;

4) дозаторы;

5) питатели и т.д.

Структурные элементы автоматических систем регулирования изображают в виде прямоугольников произвольного (но одинакового) размера.

Графическое изображение автоматической системы регулирования в виде прямоугольников, соединенных линиями связи. называют структурной схемой системы (рис. 2). На линиях связи указывают вид и форму сигнала, а внутри прямоугольников вписывают наименования структурных элементов системы или их тип. Структурная схема системы автоматического регулирования дает самое общее представление о принципе работы той или иной конкретной системы.

Так, например, изображенная на рис. 2 система регулирования уровня реагентов в емкости (выходной показатель hр) измеряется с помощью ультразвукового измерительного преобразователя (датчик типа PROBE), токовый сигнал с которого (4 - 20 мА), пропорциональный текущему значению измеряемого уровня, поступает на вторичный измерительный прибор (типа Диск-250) записывающий и показывающий. Токовый сигнал с выходного устройства вторичного прибора поступает на вход автоматического регулятора системы “Контур-2” РС-29, где он сравнивается с токовым сигналом задатчика, пропорционального желаемому значению регулируемой величины.

 

 

Рис. 2. Структурная схема системы автоматического регулирования уровня

 

Автоматический регулятор РС-29 в соответствии с реализуемым им ПИ-законом регулирования вырабатывает управляющее воздействие y.

Регулятор с помощью магнитного пускателя (на структурной схеме не показан) управляет положением вала исполнительного механизма (ИМ механизмом электрическим однооборотным типа МЭО-1, 6/40).

Выходной шток ИМ через элементы кинематической связи соединяется с регулирующим клапаном, выполняющим функции регулирующего органа РО, изменяя таким образом расход реагента в емкость, для поддержания заданного уровня реагента при меняющемся расходе.

Расход реагента Q(t) в рассмотренной системе является основным возмущающим воздействием.

Помехами в рассматриваемой системе является зарастание реагентами трубопроводов, подающих реагент в емкость и идущих к потребителю.

Таким образом, возможно поддерживать заданный уровень в емкости, обеспечивая высокое качество дозирования реагента.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1711; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь