Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Н.Л. Михайлова, Л.С. Чемпалова



Н.Л. Михайлова, Л.С. Чемпалова

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Учебное пособие

Ульяновск

УДК 612.82/.83(075.8)

ББК 28.991.7я73

М 69

 

Рецензенты:

д.б.н., профессор кафедры анатомии и физиологии человека
Ульяновского государственного педагогического университета им. И.Н. Ульянова,
заслуженный деятель науки РФ, академик РАЕН Л.Л. Каталымов;

д.б.н., профессор, зав. кафедрой адаптивной физической культуры
Ульяновского государственного университета М.В. Балыкин

 

 

Михайлова, Н.Л.

М 69 Физиология центральной нервной системы: учебное пособие / Н.Л. Михайлова, Л.С. Чемпалова. – Ульяновск: УлГУ, 2010. – 164 с.

Учебное пособие написано на основе многолетнего опыта чтения лекций по физиологии центральной нервной системы для студентов специальностей «Лечебное дело», «Психология» и «Биология».

Пособие состоит из двух частей: в первой части излагается материал по общей физиологии центральной нервной системы (ЦНС), во второй – по частной физиологии ЦНС. Изложение материала направлено на создание материальной основы для понимания механизмов интегративных процессов мозга и его роли в организации и регуляции функций.

Учебное пособие предназначено для студентов высших учебных заведений, специализирующихся в различных областях медицины, физиологии, психологии, физкультуры и спорта, а также для всех интересующихся физиологией мозга. Может быть использовано для самостоятельной работы студентов.

 

УДК 612.82/.83(075.8)

ББК 28.991.7я73

 

© Михайлова Н.Л., Чемпалова Л.С., 2010

© Ульяновский государственный университет, 2010


ВВЕДЕНИЕ

Центральная нервная система (ЦНС) в организме выполняет интегрирующую роль, объединяя в единое целое все ткани, органы и координируя их специфическую активность в составе целостных гомеостатических и поведенческих функциональных систем.

Выполнение интегрирующей роли ЦНС осуществляет через свои функции. Основными функциями ЦНС являются:

1. Управление деятельностью опорно-двигательного аппарата. ЦНС регулирует тонус мышц и посредством его распределения поддерживает естественную позу, а при нарушении восстанавливает ее, а также инициирует все виды двигательной активности.

2. Регуляция работы внутренних органов. Осуществляется автономной нервной системой и эндокринными железами. Основная задача этой функции – поддержание гомеостаза (постоянства внутренней среды) в состоянии покоя и при различных видах деятельности.

3. Обеспечение адаптивного поведения организмов в изменяющейся окружающей среде.

4. Обеспечение высших психических функций: восприятие, внимание, эмоции, мышление, сознание, память. Язык как средство коммуникации, базирующееся на второй сигнальной системе.


ЧАСТЬ 1

 

ОБЩАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

 

1. Нейрон как структурно-функциональная единица нервной системы

 

Структура нервной клетки

Нейроны, или нервные клетки, являются структурно-функциональ-
ными единицами нервной системы. Несмотря на то, что эти клетки имеют те же самые гены, то же самое строение и тот же самый биохимический аппарат, что и другие клетки, они обладают и уникальными способностями, которые делают функцию мозга отличной от функции других органов. Важными особенностями нейронов является характерная форма, способность наружной мембраны генерировать нервные импульсы и наличие уникальной структуры, синапса, служащего для передачи информации от одного нейрона к другому. Нервные клетки чрезвычайно вариабельны по своему строению. В каждой из групп чувствительных, ассоциативных и двигательных нейронов имеется большое разнообразие форм, размеров тела клеток, величины и характера ветвления их отростков (рис. 1.1).

Тело нейрона. По форме тела различают пирамидные, многоугольные, круглые и овальные клетки. На основании количества отходящих от тела клетки отростков все нейроны подразделяются на униполярные, биполярные и мультиполярные. Отростки могут отходить более или менее равномерно (радиально) от всей поверхности тела клетки либо концентрированно от одного из полюсов. Мультиполярные нейроны наиболее вариабельны по форме и имеют по нескольку отростков. Общепринято считать, что один из них – аксон (нейрит), который может начинаться как от тела клетки, так и от проксимальной части одного из дендритов. От тела биполярной клетки отходят два отростка. Тот из них, который направляется на периферию, принято считать дендритом, а центральный отросток – аксоном. Тела униполярных нейронов имеют овальную форму. От тела клетки отходит один крупный отросток, который на некотором расстоянии делится на два отростка: периферический и центральный. Форма клеточного тела целиком зависит от местоположения клетки в соответствующем участке нервной системы. На форму нервных клеток могут оказывать влияние соседствующие с ними кровеносные сосуды, пучки волокон или даже отдельные миелинизированные волокна крупного диаметра. Таким образом, одинаковые в функциональном отношении нервные клетки могут быть разными по форме.

 

 

Рис. 1.1. Нейрон зрительной коры кошки (микрофотография).

На микрофотографии хорошо видны тело и дендриты нейрона

(рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

Размеры нервных клеток колеблются в широких пределах. У разных по высоте организации животных и даже у одной и той же особи можно наблюдать примеры как очень мелких, так и очень крупных клеток. Так, диаметр клеток-зерен коры мозжечка равен приблизительно 5 мкм, а у моторных клеток головного и спинного мозга он достигает 70 мкм и более. Тела нервных клеток брюхоногих моллюсков хорошо различимы простым глазом (500-900 мкм).

В нервной клетке существует прямая связь между массой сомы, величиной поверхности дендритов, калибром аксона, количеством коллатералей аксона и толщиной его миелинизированной оболочки. Было выяснено, что чем крупнее тела мотонейронов, тем длиннее у них аксон и больше дендритная поверхность нейрона.

Форма нервных клеток определяется также комплексом их взаимосвязей с афферентными волокнами. Поэтому можно думать, что чем сложнее межнейронные связи каждого данного нейрона, тем сложнее его внешние очертания. Нейроны коры головного мозга характеризуются значительной вариабельностью форм.

Подобно всем клеткам, нервные клетки отграничены сплошной плазматической мембраной от внешней среды. Тело нейрона содержит цитоплазму, ядро, есть микротрубочки и нейрофиламенты, органеллы и включения. В цитоплазме нейрона есть вещество Ниссля. Этот компонент цитоплазмы является определенным индикатором состояния нейрона, так как при изменении функционального состояния нейрона существенно изменяется вещество Ниссля. Основным компонентом вещества Ниссля является РНК. Количество РНК варьирует в зависимости от типа клеток и их размеров. Нервные клетки содержат также аппарат Гольджи, мультивезикулярные тела, лизосомы, пигменты (меланин или липофусцин). Меланин постоянно содержится в нейронах черной субстанции и голубого пятна. Присутствие меланина описано в дорсальном ядре блуждающего нерва, в ряде ядер ствола мозга и в симпатических нейронах. В тех клетках, где имеется меланин, мало липофусцина или он совершенно отсутствует. Липофусциновые гранулы, в отличие от меланина, начинают обнаруживаться в нейронах только с увеличением возраста. В нейронах обнаруживается большое количество митохондрий. Тело нейрона определяет процессы жизнедеятельности всей клетки и способность к регенерации ее отростков (рис. 1.2, 1.3).


 

Рис. 1.2. Нейрон. Все части нейрона увеличены пропорционально
(рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

 

Рис. 1.3. Тело и дендриты нейрона
(рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

 

 

Дендриты. Особенности, характерные для типичных дендритов и аксонов, приведены в таблице 1.1.

 

Таблица 1.1

Функции нервных волокон

Распространение возбуждения в нервных волокнах. Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.

Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.

Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.

Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.

Исследования показывают, что в однородно поляризуемом, однородном участке нервного волокна изменения мембранного потенциала при приложении прямоугольного толчка гиперполяризующего или слабого деполяризующего тока нарастают по экспоненте:

 

,

где RC = τ – постоянная времени мембраны, т.е. время, в течение которого потенциал нарастает до 63% от своей конечной величины. При выключении тока потенциал возвращается к исходному уровню по экспоненте с той же постоянной времени τ . Такие изменения мембранного потенциала принято называть пассивными или электротоническими, в отличие от активных, связанных с повышением или снижением ионных проводимостей мембраны.

Подобные изменения наблюдаются на сферических клетках (на соме). Описание цилиндрической клетки, в частности аксона, более сложно. В этом случае уже нельзя считать внутренний проводник эквипотенциальным по всей длине. Внешний проводник можно считать эквипотенциальным за счет увеличения объема внеклеточной жидкости. Потенциал на такой мембране зависит не только от времени включения тока, но и от расстояния х по отношению к месту приложения тока:

 

,

где а – радиус волокна, R – удельное сопротивление аксоплазмы, CМ и RМ – емкость и сопротивление на единицу площади мембраны. Левая часть уравнения описывает плотность тока через каждую точку мембраны, которая равна сумме плотностей емкостного ( )и омического ( ) токов, стоящих в правой части уравнения.

Через длительное время (намного большего постоянной времени
t = RМ CМ) после включения импульса емкость мембраны полностью зарядится и емкостный ток станет равным нулю. Уравнение примет вид:

 

.

Его решение:

 

,

 

где V0 – потенциал в начале кабеля (х = 0), l – постоянная длины волокна.

Постоянная длины характеризует крутизну затухания потенциала вдоль волокна. Чем больше l, тем дальше по волокну проходит сигнал. Скорость электротонического распространения пропорциональна удвоенной величине константы длины волокна l и обратно пропорциональна постоянной времени t = RМ CМ. Величина l может быть выражена через сопротивление мембраны RМ , сопротивление внутренней среды – аксоплазмы Ri и диаметра волокна d:

 

.

Кабельные свойства нервных волокон оказывают существенное влияние не только на развитие электротонических потенциалов, но и на характер активных ответов – величину порога, амплитуду, крутизну нарастания и длительность потенциала действия.

В настоящее время можно считать строго доказанным, что проведение потенциала действия (ПД) вдоль нервного волокна осуществляется с помощью локальных токов, возникающих между возбужденным и покоящимся участками мембраны. Локальный ток изменяет величину мембранного потенциала покоя в покоящемся участке до критического уровня деполяризации, что и является причиной возникновения потенциала действия.

Многочисленными исследованиями было показано, что скорость проведения пропорциональна постоянной длины волокна l и обратно пропорциональна постоянной времени мембраны t (Чайлохян Л.М., 1962). Поскольку в безмякотных нервных волокнах l пропорциональна квадратному корню из диаметра волокна

 

,

 

скорость проведения при прочих равных условиях также пропорциональна корню квадратному из диаметра волокна.

В миелинизированных нервных волокнах проведение происходит сальтаторно – от перехвата Ранвье к перехвату Ранвье. Длина межперехватного участка примерно пропорциональна диаметру волокна, поэтому скорость проведения в этих волокнах пропорциональна не корню квадратному из диаметра волокна, а просто его диаметру.

Принято считать, что скорость проведения зависит от величины так называемого фактора безопасности (гарантийности) Ф, т.е. отношения амплитуды распространяющегося ПД к пороговому потенциалу. Пороговый потенциал – это та величина, на которую нужно изменить мембранный потенциал, чтобы достичь критического уровня деполяризации.

 

,

 

где Vs – амплитуда ПД, Vt – пороговый потенциал.

При Ф = Vt распространения возбуждения нет. Для аксона краба это отношение равно 7.

Было показано, что пороговый потенциал Vt находится в тесной зависимости от чувствительности системы натриевой проницаемости мембраны к деполяризации. Чем выше эта чувствительность, т.е. чем на большую величину повышается PNa и, соответственно, натриевый входящий ток INa при данном сдвиге потенциала, тем ниже порог, и наоборот. Изменение состояния системы калиевой проницаемости на величину порогового потенциала практически не оказывает влияния. Точно так же очень мало влияет на пороговый потенциал проводимость токов «утечки». При постоянном потенциале покоя фактор безопасности должен возрастать при воздействиях на нервное волокно, которые повышают чувствительность натриевой системы к деполяризации, например, снижение концентрации ионов кальция в окружающей среде. Значительное снижение фактора безопасности вызывают агенты, усиливающие исходную инактивацию натриевой системы или уменьшающие натриевую проводимость, поскольку в этом случае амплитуда потенциала действия падает, а пороговый потенциал растет. Такие изменения проведения возбуждения наблюдал Тасаки (1957) и другие исследователи при воздействии на нервное волокно анестетиков и наркотиков в малых концентрациях, недостаточных для полного подавления потенциала действия.

Сложное влияние на фактор безопасности оказывает уровень потенциала покоя. Кратковременная подпороговая деполяризация мембраны, не изменяющая существенным образом критического потенциала и амплитуды потенциала действия, повышает фактор безопасности, так как Vt = Eo – Ek. При сильной же деполяризации амплитуда спайка падает, критический потенциал растет, поэтому фактор безопасности уменьшается.

Наряду с фактором безопасности существенное влияние на скорость проведения возбуждения оказывает крутизна восходящей фазы распространяющегося потенциала действия. Крутизна этой фазы зависит как от пассивных, так и активных свойств мембраны.

Примерно 1/3 восходящей фазы распространяющегося ПД связана с пассивной деполяризацией мембраны нервного волокна током локальной цепи. Скорость же этой деполяризации при данной силе локального тока определяется постоянной времени мембраны t = RM CM. Чем эта величина меньше, тем быстрее нарастает деполяризация и, следовательно, круче поднимается спайк. Инактивация натриевой системы, или снижение проницаемости для натрия (активные свойства мембраны), резко уменьшает крутизну восходящей фазы. Таким образом, при большинстве воздействий изменения скорости нарастания восходящей фазы ПД по своему направлению совпадают с изменениями фактора безопасности.

Согласно теории локальных токов, амплитуда распространяющегося потенциала действия Vs, в отличие от мембранного спайка, зависит не только от ЭДС возбужденной мембраны Е, но и от соотношения входных сопротивлений возбужденного R1 и невозбужденного (сопротивление нагрузки R2) участков волокна:

 

. (1)

 

Чем отношение выше, тем в большей мере амплитуда распространяющегося ПД приближается к величине Е, тем, следовательно, выше фактор безопасности, и наоборот. Из чего вытекает, что снижение сопротивления мембраны (повышение ее ионной проводимости) при критической деполяризации не только ведет к возникновению спайка, но и способствует увеличению фактора безопасности, а значит, и скорости проведения.

Из формулы (1) ясно, что при проведении возбуждения по геометрически неоднородным возбудимым проводникам амплитуда распространяющегося спайка должна существенно зависеть от того, насколько близко находится возбужденный в данный момент участок волокна к месту его ветвления или расширения.

При расширении нервного волокна, например, в месте перехода его в тело клетки или в области ветвления аксона, суммарная площадь сечения волокон и общая площадь их мембраны увеличивается, а следовательно, R2 падает. Уменьшение R2 снижает фактор безопасности и, соответственно, скорость проведения. При некоторых условиях уменьшение R2 может привести к полному блокированию нервного импульса.

Расчеты показали, что потенциал действия легко проходит трехкратное расширение, с трудом пятикратное и полностью блокируется при шестикратном. Причиной развития блока является резкое снижение амплитуды распространяющегося ПД вблизи области расширения волокна.

Трофическая функция нервных волокон. Трофической функцией обладают афферентные и эфферентные волокна.

Афферентные нервы обладают двумя нейротрофическими, неимпульсными функциями. Можно различить прямое морфогенетическое и трофическое влияние на периферические органы и регуляторную функцию с обратной связью, зависящую, вероятно, от внутриаксональных центростремительных импульсов. Нейротрофическое морфогенетическое влияние доказано наличием: а) зависимости структуры вкусовых почек от вкусовых нервов; б) стимулирования регенерации конечности у амфибий чувствительными нервами посредством специфического, стимулирующего рост вещества немедиаторной природы; в) дифференцировки и поддержания рецепторов. После деафферентации в некоторых органах развиваются трофические нарушения. Первичный «трофический» нейрон для мышцы – это нейрон моторный. Нельзя забывать также, что во всех нервах проходят эфферентные адренергические волокна, вкоторых нейросекреты (катехоламины) транспортируются аксоплазматическим током к периферическим органам.

Аксональный транспорт. Описаны две системы аксонального транспорта – медленный, со скоростью 1-3 мм/день, и быстрый, со скоростью примерно 400 мм/день.

Аксональный транспорт поддерживает непрерывность аксона и синаптических мембран и восстанавливает белки, гликопротеины, ферменты и другие вещества, исчезающие в ходе локального расщепления, экзоцитоза в синаптическую щель и ретроградной миграции к нейрону. Все это происходит благодаря быстрому транспорту, на который не оказывают влияния процессы возбуждения. Транспорт продолжается после блокады потенциалов действия и не повышается при усиленной активности нерва. Аксональный транспорт осуществляется в обоих направлениях; центростремительный ток контролирует, по-видимому, синтез белков в нейроне и играет также роль «сигнала» для хроматолиза после аксотомии. Различные вещества, ферменты, передатчики и макромолекулы передвигаются в аксоне с разной скоростью.

Аксоплазматический транспорт можно зарегистрировать по накоплению веществ после нарушения непрерывности аксона и по наблюдению за продвижением меченых соединений после введения их в нейрон.

Белки, синтезируемые в теле клетки, синаптические медиаторные вещества и низкомолекулярные факторы спускаются по аксону к нервной терминали вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен ретроградный транспорт (по аксону к телу клетки): вирус полиомиелита, вирус герпеса, столбнячный токсин, а также ферменты – пероксидаза хрена, которая широко используется в нейроанатомии в качестве маркиратора. Ретроградный транспорт, видимо, является главным фактором регуляции синтеза белка в клетке. После перерезки аксона через несколько дней в соме начинается хроматолиз, что свидетельствует о нарушении синтеза белка. Быстрый аксонный транспорт зависит от достаточного снабжения метаболической энергии. Возможность транспорта создают микротрубочки диаметром 25 мкм, состоящие из белка тубулина, и некоторые нейрофибриллы, состоящие из белка актина, образующие транспортные нити. Транспортные нити скользят вдоль микротрубочек. При этом они взаимодействуют с выступами микротрубочек, происходит расщепление АТФ, которое и обеспечивает энергию для транспорта. Более медленно транспортируются крупные белки. Но считают, что сам транспортный механизм не является более медленным, однако вещества время от времени попадают в клеточные компартменты, которые не участвуют в транспорте. Медленный ток имеет, по-видимому, также отношение к аксональному росту. Аксоплазматический ток прекращается колхицином, что объясняется влиянием этого вещества на микротрубочки.

 

 

Физиология синапсов

Синапс (от греч. synapsis) обозначает соединение, связь – это специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Данный термин был предложен Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Справедливости ради нужно отметить, что еще в 60-х годах XIX столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить происхождение даже самых простых рефлексов.

Синапсы различают: 1) по их местоположению; 2) по способу передачи сигналов.

1) По местоположению выделяют синапсы центральные и периферические. Центральные синапсы – это синапсы, которые осуществляют контакт между нейронами в центральной нервной системе. К ним относятся аксо-аксональные синапсы, аксо-дендритические, аксо-соматические, дендро-дендритические (обнаружены гистологически; функциональное значение не вполне ясно). Центральные синапсы классифицируют также по знаку их действия – возбуждающие и тормозные. Кроме того, распространено деление синапсов по тому медиатору (передатчику), который осуществляет посредничество: адренергические синапсы, холинергические синапсы и др.

К периферическим синапсам относят нервно-мышечные, синапсы вегетативных ганглиев (синапсы, образованные преганглионарными и постганглионарными волокнами).

2) По способу передачи синапсы классифицируются как химические и электрические.

Для всех этих образований характерно наличие пресинаптической мембраны, синаптической щели (10-50 нм), постсинаптической мембраны. Пресинаптическая мембрана является мембраной пресинаптического окончания отростка нейрона (чаще всего аксона).

У человека и высших позвоночных животных наибольшее распространение получили химические синапсы. Химические синапсы в пресинаптическом окончании содержат везикулы с медиатором, химическим передатчиком. Ширина синаптической щели в среднем составляет 20 нм. На постсинаптической мембране содержатся рецепторы к данному медиатору, ферменты, разрушающие данный медиатор. Таким образом, постсинаптическая мембрана является рецепторной частью синапса, ею может быть специфически дифференцированный участок дендрита, тела нейрона и его аксона.

В электрическом синапсе не вырабатывается медиатор. Синаптическая щель несколько меньше, чем у химического синапса (2-4 нм). В синаптической щели между пре- и постсинаптической мембранами имеются белковые мостики-каналы шириной 1-2 нм, где движутся ионы и небольшие молекулы. Это способствует более низкому, чем у пресинаптической мембраны, сопротивлению постсинаптической мембраны. Поэтому возбуждение от пресинаптической мембраны к постсинаптической мембране в электрических синапсах передается электрическим путем, т.е. осуществляется эфаптическая передача. В отличие от химических синапсов, электрические синапсы отличаются большей скоростью проведения возбуждения, высокой надежностью передачи, возможностью двустороннего проведения.

Электрические синапсы обнаружены у крыс в вестибулярном ядре продолговатого мозга, в структурах дыхательного центра продолговатого мозга (при этом обсуждается их роль в механизмах автоматического ритмогенеза дыхания); у кошки электрические синапсы обнаружены между нейронами нижних олив, в структурах таламуса, между фоторецепторами сетчатки и горизонтальными клетками у рыб и др.

Но все-таки наибольшее распространение в процессе эволюции получили химические синапсы. Это обусловлено рядом свойств этих образований, которые имеют большое значение в организации деятельности нервной системы (рис. 1.4).

 

 

 

 

Рис. 1.4. Синапс (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

 

 

Медиаторы

Медиатор (или трансмиттер) – понятие функциональное. Представление о медиаторах утверждалось в физиологии медленно. Можно отметить главные вехи истории этой проблемы:

1. Вначале была сформулирована гипотеза о том, что влияние нервной системы на периферические органы осуществляется посредством особых активных веществ. Прямое доказательство было сделано Отто Леви в 20-х годах XX века.

2. В 1924 году была предложена гипотеза об участии веществ-посредников в осуществлении межнейронных связей. Это было экспериментально подтверждено в 1933 году.

3. В 50-х годах нейрофизиологи приступили к идентификации веществ, выполняющих медиаторные функции в головном и спинном мозге.

В разработке различных вопросов многогранной проблемы по нейроэффекторной передаче большая заслуга принадлежит группе кембриджских фармакологов (Отто Леви, Флитчер, Энгли, Элиот). Особая заслуга в изучении синаптических процессов принадлежит отечественной школе казанских физиологов. Задолго до работ О. Леви Самойлов писал: «… процессы, протекающие в нерве и передаточном звене между нервом и мышцей, при пробегании возбуждения отличаются друг от друга – в нерве физические процессы, а в передаточном звене – химические». В настоящее время ведется интенсивное исследование механизмов передачи в синапсе, изучается структура и функции рецепторов. Исследования ведутся с помощью различных современных иммунохимических, фармакологических и других методов.

Установлено, что медиаторную функцию выполняют разные химически неродственные вещества. Несмотря на разнообразие веществ, играющих роль медиаторов, можно отметить, что в этой роли выступают, как правило, небольшие органические молекулы, молекулярная масса которых лежит в пределах 150-300 дальтон. Более высокой может быть молекулярная масса медиаторов пептидергических нейронов. Выделяют ряд критериев для идентификации медиаторов:

1. Высвобождение из пресинаптических нервных терминалей вещества в достаточных количествах и избирательность локализации медиатора в нервных окончаниях.

2. Присутствие в нервных терминалях ферментов, участвующих в синтезе и распаде медиаторов.

3. Са++-зависимое выделение медиатора при стимуляции нервных окончаний в объеме, соответствующем количеству стимулов.

4. Идентичность действия медиатора и естественного передатчика на рецепторы постсинаптической мембраны.

5. Возможность с помощью фармакологических агентов блокировать эффекты предполагаемого медиатора.

6. Наличие системы обратного захвата медиатора в пресинаптические терминали и некоторые другие признаки. Следует заметить, что исследователи при выделении критериев для идентификации медиаторов встречаются с целым рядом сложностей.

В настоящее время к медиаторам относят следующие вещества.

Катехоламины (дофамин, норадреналин, адреналин) – производные аминокислоты тирозина. Дофаминергические нейроны находятся у млекопитающих животных в среднем мозге, в гипоталамической области, норадренергические – в среднем мозге, в варолиевом мосту, в продолговатом и промежуточном мозге. Самая значительная группа норадренергических клеток находится в голубом пятне, в составе периферической нервной системы в симпатической цепочке ганглиев и в некоторых интрамуральных ганглиях. Адренергические нейроны обнаружены у млекопитающих животных в продолговатом мозге.

Серотонин (5-окситриптамин) – производное аминокислоты триптофана. Серотонинергические нейроны распространены в древних, стволовых частях головного мозга, их отростки не покидают центральную нервную систему. Тела нейронов лежат преимущественно в срединной области мозгового ствола в составе дорсального и медиального ядер шва продолговатого мозга, среднего мозга и варолиева моста. Серотонинергические волокна иннервируют обширные области ЦНС (новую кору, гиппокамп, бледный шар, миндалину и др.).

Ацетилхолин относится к простым эфирам – уксуснокислый эфир холина. Ацетилхолинергические нейроны широко распространены в ЦНС, секреторные терминали которых лежат как в ЦНС, так и вне ЦНС.

В качестве медиаторов в ЦНС выделен целый ряд свободных аминокислот: глутаминовая кислота, аспарагиновая кислота, гамма-амино-
масляная кислота, глицин.
Глицин является медиатором для некоторых интернейронов спинного и продолговатого мозга. Кроме того, в качестве медиаторов рассматриваются некоторые пептиды, например вещество Р, выделенное в 1931 году Эйлером и Гэбдумом из кишки кролика. Существует несколько форм пептидов, одна из которых, состоящая из 11 аминокислот, обнаружена в задних корешках спинного мозга. Гипоталамические нейрогормоны (вазопрессин, окситоцин и др.) признаются в качестве медиаторов, гистамин, производное аминокислоты гистидина, АТФ (пуринергические нейроны), аспарагиновая кислота также относятся к медиаторам; карнозин-дипептид предположительно является передатчиком в окончаниях обонятельного нерва на митральных клетках обонятельных луковиц и др.

В результате многолетних исследований по проблемам синаптологии постепенно выделился ряд принципов:

1. Единство секреторного химизма (принцип Дейла). Одна из закономерностей, сформулированная Дейлом, заключается в том, что разные секреторные терминали одного нейрона выделяют один и тот же набор химических веществ. Прежде полагали, что разные терминали одного нейрона выделяют один и тот же медиатор. При этом имелось в виду, что нейрон метаболически един. Но современные данные показывают, что медиатор секретируется не изолированно, а вместе с веществами-спутниками, которые вместе с ним находятся внутри секреторных везикул (например, вместе с норадреналином – АТФ, с дофамином – бета-оксидаза и др.).

2. Амбивалентность медиатора. Противоположную точку зрения высказывал Экклс: «Нервная клетка не может быть амбивалентной по механизму своего действия на субсинаптическую мембрану». Современная наука это не подтвердила. Сейчас доказана амбивалентность медиатора и нейрона. Один и тот же медиатор может обеспечить разнообразные синаптические эффекты, различающиеся по знаку действия и по ионному механизму. Для большинства синапсов амбивалентность связана с наличием различных рецепторов как на постсинаптической мембране, так и на пресинаптической. Например, в норадренергическом синапсе выявлены α 1-, α 2-, β 1- и β 2-рецепторы, в холинергическом синапсе – М- и Н-рецепторы и т.д. Именно рецептор в большинстве случаев определяет, какой ионный канал будет открыт и какие ионные токи будут формировать постсинаптический потенциал.

3. Специфичность секреторного химизма нейрона. Каждому нейрону свойственен определенный тип химизма, который характеризуется набором секреторных органелл, ферментов, функциональных белков, нейропептидов и т.д. Представление о секреторной специфичности нервных клеток – это одно из крупных достижений современной физиологии. Для каждого синапса, исходя из его специфичности, найдены специфические блокаторы и активаторы его деятельности, влияющие на разные механизмы: на активность ферментов, на состояние рецепторов и на метаболизм. Например, кураре блокирует рецепторы постсинаптической мембраны в нервно-мышечном синапсе, токсин Cl. botulinum оказывает «функциональную денервацию» – блокирует высвобождение медиатора из пресинаптического окончания и т.д.

Некоторые примеры механизмов действия трансмиттеров (ацетилхолин, глутамат, серотонин и др.) на различные типы рецепторов приведены в таблице 1.2.

 


Таблица 1.2

Примеры механизмов действия трансмиттеров на различные типы рецепторов

 

Трансмиттер Тип рецептора Действие на
Ацетилхолин N1 (мышечный тип) Лигандуправляемый
  N2 (нейронный тип) катионный канал
  m1, m3, m5 IP3/DAG
  m2 Gα -ГТФ, GК+
Глутамат NMDA, AMPA Лигандуправляемый
    катионный канал
  мGluR1-5 IP3/DAG
Глицин GlyR Анионный канал
GABA (ГАМК) GABAA, GABAC Сl--канал
  GABAB цАМФ ↑, GK+ ↑, Ca2+
Серотонин 5-HT1 цАМФ ↓
  5-HT2 IP3/DAG
  5-HT3 Лигандуправляемый
    катионный канал
  5-HT4-7 цАМФ ↑
Дофамин D1 цАМФ ↑
  D2 цАМФ ↓
Норадреналин α 2 IP3/DAG
Адреналин α 1 цАМФ ↓, GK+ ↓, Ca2+
  β 1, β 2 цАМФ ↑
Опиоиды μ, δ цАМФ ↓, GK+
  κ Ca2+

 

Освобождение медиаторов


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1315; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.083 с.)
Главная | Случайная страница | Обратная связь