Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Экосистемы, экология и взаимоотношения живых существ



 

Закономерности взаимоотношений живых существ с окружающей средой изучает специальная наука — экология. В переводе с греческого языка слово «экология» означает; «изучение дома». Иногда «дом», место обитания, бывает самым неожиданным.

Все организмы, существующие на Земле, приспособились к определенному атмосферному давлению. Однако с помощью шаров-зондов удалось обнаружить споры бактерий и плесневых грибков на высоте 33 километров, где давление значительно ниже. Бактерии живут в радиоактивных урановых рудах, в сероводородной среде, даже в таком ядовитом веществе, как концентрированный раствор хлористой сулемы. Бактерии были обнаружены и на глубине 4 тысяч метров — в нефтеносных слоях, и в горячих источниках, богатых борной кислотой. Живые организмы существуют и при гигантских давлениях — на глубине более 10 километров, и в холоде вечных льдов Арктики и Антарктики.

И в знойной, казалось бы, совсем безжизненной Сахаре, где влажность достигает всего 0, 5 процента, существует 98 видов бактерий, 28 видов грибов и 84 вида водорослей. Живые существа, некоторые, иногда могут долгое время обходится без воды. Обитающий в Северной Нигерии комар откладывает яйца в мельчайшие щели скал, заполненные водой. Когда маленькие лужицы высыхают, личинки комара приостанавливают свое развитие. Но стоит пройти новому дождю, и они, как ни в чем не бывало, оживают вновь.

Дрожжи и несколько видов бактерий способны существовать даже в бескислородной среде. Личинки комара хирономуса живут и развиваются в воде, содержащей в тысячу раз меньше кислорода, чем обычный воздух. В воде некоторых водоемов бывает в 2 тысячи раз меньше кислорода, чем в воздухе, но и там есть жизнь.

Все живые существа обладают колоссальным биотическим потенциалом, иначе говоря, способны размножаться с такой скоростью, что, если бы их размножению ничто не препятствовало, они наводнили бы собой всю биосферу.

Что же противодействует такому перенаселению? Почему, несмотря на удивительную приспособленность к неблагоприятным условиям, живые организмы все-таки гибнут?

Голод, несчастные случаи, стихийные бедствия, болезни, уничтожение одних видов другими — все, вместе взятые, причины такого рода называют сопротивлением среды. Каждый вид должен был выработать такие качества, которые бы позволяли ему преодолевать это сопротивление среды. На протяжении миллионов или даже миллиардов лет возникла адаптация — приспособленность к окружающим условиям, или та знаменитая «целесообразность», которая поражает воображение и кажется порой сверхъестественной.

Каждая из адаптаций появилась в результате того, что среда постоянно отсеивала неблагоприятные наследственные изменения, появляющиеся у всех без исключения видов растений и животных. Действие естественного отбора не прекращается ни на минуту — выживают только наиболее приспособленные.

Экологи изучают различные типы приспособляемости, и уже выявлены некоторые закономерности, помогающие понять это чудесное свойство всего живого. Известны три основных типа адаптации: структурные изменения -окраски, строения тела отдельных органов и т. п.; физиологические и поведенческие.

Группу организмов, относящуюся к одному или близким видам и занимающую определенную область, в экологии называют популяцией. Популяции входят в состав биоценозов — в совокупность растительных и животных организмов, населяющих участок среды обитания.

Прежде чем продолжить рассмотрение каких-либо конкретных экосистем, определим их основные элементы.

1. Абиотическая (неживая) среда — вода, минеральные вещества, газы, органические вещества неживой природы и гумус.

2. Продуценты (автотрофы) — производители первичной биологической продукции. К ним относят живые существа, способные строить себя из неорганических материалов (углекислого газа, воды, минеральных веществ) в процессе приобретенного и унаследованного с реликтовых времен фотосинтеза.

3. Консументы (они же гетеротрофы) — организмы, являющиеся в пищевой цепи потребителями органического вещества. Консументы первого порядка — растительноядные животные; консументы второго, третьего и т. д. порядков — хищники.

4. Редуценты (от лат. возвращающий, восстанавливающий), они же деструкторы, разлагатели — организмы (сапротрофы), разлагающие мертвое органическое вещество и превращающие его в неорганические вещества, которые в состоянии усваивать другие организмы — продуценты. Редуценты — это бактерии, грибы, прочие микроорганизмы, а также черви, личинки насекомых, другие мелкие почвенные организмы, способные превращать органическое вещество в минеральные соединения. Взаимодействие продуцентов, консументов и редуцентов обеспечивает биотический круговорот. Последний представляет собой непрерывный процесс создания и деструкции органического вещества. Все живое вещество биосферы обновляется в среднем за 8 лет. В океане циркуляция идет во много раз быстрее, например, масса фитопланктона обновляется каждый день, смена кислорода в атмосфере происходит за 2000 лет.

В природе взаимоотношения различных видов животных, растений крайне многообразны. Бывает так, что одни виды помогают другим: например, на панцирях многих крабов обитают кораллы или актинии, помогающие крабам маскироваться. Другой пример: простейшие жгутиковые, живущие в кишечнике термитов, выделяют фермент, без которого термиты не могли бы нормально переваривать древесину и расщеплять ее до сахаров.

Но далеко не все отношения между различными видами можно назвать добрососедскими. Они приобретают диаметрально противоположный характер, когда, например, плесневые грибы подавляют рост бактерий, хищник уничтожает жертву, а паразит губит хозяина. Однако и они не всегда вредны для вида в целом: под влиянием естественного отбора в природе устанавливается необходимое равновесие.

А если такое равновесие нарушается, это приводит к поистине поразительным результатам. Раньше к некоторым видам животных или растений было принято применять термин «вредный» или «полезный». Так, например, сорняк на поле, где растет пшеница, — «вредный», кошка, уничтожающая мышей, — «полезная» и т. п. Сейчас уже ни у кого не вызывает сомнения, что для нормального существования сообществ нужны различные их звенья, независимо от того, вредны они или полезны для человека.

Еще один показательный пример. На северном склоне Большого Каньона в Колорадо (США) уничтожили волков для того, чтобы увеличить количество оленей. Олени беспрепятственно размножались, и скоро их стадо возросло до 100 тысяч голов. Пищи для такого количества животных оказалась недостаточно, и олени стали гибнуть от голода. В конце концов, их поголовье уменьшилось в 10 раз. При выяснении причин гибели животных оказалось, что, когда в этом районе существовали волки, среди оленей поддерживалось устойчивое равновесие, при котором их число соответствовало запасам пищи.

Большинство сообществ беспрерывно меняется — и от сезона к сезону, и изо дня в день, и даже в каждую минуту. Сообщество может состоять в основном из животных или, наоборот, из растений. Изменения, происходящие с сообществом на любой стадии его развития, затрагивают большинство входящих в него организмов. Появление новых растений или животных сопровождается изменениями внешней среды, которые, как правило, благоприятны для новых видов и неблагоприятны для старожилов. Постепенно перестройка в биоценозе замедляется, и он достигает равновесия. Но достигнутое равновесие тоже временно.

«Даже коралловый риф — один из наиболее стабильных биоценозов, — и тот подвержен значительным изменениям. При каждом продолжительном поднятии или понижении уровня моря, при каждом медленном перемещении земной коры сам коралл, являющийся основанием гигантского биоценоза рифа, может полностью погибнуть. Поэтому точнее говорить не об общем равновесии в природе, а о великом множестве равновесий в мире живых существ», — писал Л. Фарб в «Популярной экологии».

Плодотворное исследование экологических закономерностей требует участия ученых различных специальностей. В последнее время мы все чаще слышим разговор о новых пограничных междисциплинарных областях знаний — биофизике, биохимии, физической химии и т. д. Эти науки возникают на стыке нескольких дисциплин: физики и биологии, например, биофизика. Одним из таких стыков естественных наук является биолого-математическое моделирование. Как известно, окружающий нас мир поддается количественному описанию. Перефразируя известное изречение выдающегося русского физиолога и мыслителя Ивана Михайловича Сеченова, можно сказать, что все: от блеска дальних звезд, шума океанского прибоя и полета пчелы до первого крика ребенка, вдохновенного танца балерины и творческой мечты ученого — можно описать количественно. Конечно, от этого «можно» до реального «описать* путь долгий и трудный, но вполне преодолимый современной научной и технической мыслью.

В наши дни биологи исследуют существование живого на различных уровнях — от небольших участков, где обитают отдельные виды растений и животных, и до биосферы Земли в целом.

Биосфера представляет собой, прежде всего, пленку жизни, покрывающую земной шар. Общая масса живых организмов, или, как говорят ученые, общая биомасса Земли, была примерно подсчитана В. И. Вернадским и его школой: она составляет свыше 300 млрд т сухого вещества. По сравнению с общей массой Земли это не очень много, но, тем не менее, это огромная масса живого вещества.

Биосфера — существеннейшая составная часть общей жизни Земли как планеты, энергетический экран между Землей и Космосом который превращает определенную часть космической, в основном солнечной, энергии, поступающей на Землю, в ценное высокомолекулярное органическое вещество. Поступление солнечной энергии — энергетический вход в биосферу.

В громадной биомассе протекают процессы обмена веществ, одни организмы отмирают, другие нарождаются, они питаются друг другом, продуктами друг друга и т. п. Происходит огромный, вечный, постоянно работающий биологический круговорот в биосфере, целый ряд веществ, целый ряд форм энергии постоянно циркулируют в этом большом круговороте биосферы.

 

Основные концепции этологии

 

Основы этологии, или науки о поведении животных, были заложены в XIX веке. После первых экспериментов Д. Сполдинга по изучению поведения животных, Ч. Уитмен, тщательно наблюдая за поведением животных разных видов, указал, что многие инстинкты, как врожденные реакции поведения, являются настолько константными, что, подобно морфологическим структурам (органам), могут иметь таксономическое или классификационное значение. Современная таксономия (от греч. taxis — расположение, строй, порядок и потов — закон) в биологии это раздел систематики, занимающийся принципами, методами и правилами классификации организмов. Так, например, сосущие движения, которые производят голуби во время питья, являются одним из самых характерных признаков семейства голубиных.

Существенным вкладом в развитие этологии явились исследования О. Хайнрота и У. Крейга. О. Хайнрот развивал учение о значении врожденных признаков поведения птиц (особенно утиных) для таксономической оценки вида. Ч. Крейг одним из первых указал, что поведение складывается не только из отдельных, вызванных соответствующими раздражителями реакций, а направляется внутренними потребностями животных. Они подразделили инстинкты на влечения, требующие удовлетворения, и поисковое поведение, с включением моторной активности и завершающего действия, которое осуществляется после того, как раздражитель найден. Совершение этого действия, по положению Крейга, приводит к снижению или полному прекращению влечения.

Исследования и положения Хайронта и Крейга в дальнейшем были уточнены и развиты главным образом Нобелевскими лауреатами австрийцем Конрадом Лоренцем, немцем Карлом фон Фришем и англичанином Николасом Тинбергеном. Эта школа развивалась в полемике с американской школой бихевиористов, которые старались объяснить все поведение животных приобретенными рефлексами, отрицая наличие врожденных факторов. Их представление оказалось неправильным, но длительная борьба школ помогла их представителям уточнить и углубить знания о поведении животных. При этом ученые в значительной мере исходили из положения великого физиолога Ивана Павлова и его школы о разделении поведения на условные и безусловные реакции.

Имя Конрада Лоренца (1903-1989 гг.), как одного из виднейших основателей этологии, широко известно. Предмет и задачи этологии — сравнительное изучение поведения животных с точки зрения его общебиологического значения, выявление роли поведения и приспособленности животных к условиям внешней среды и в эволюции животного мира. Но этологию также интересует эволюция самого поведения, его видоизменение на разных этапах эволюционного процесса, зарождение новых форм поведения. Говоря о самой науке, этологии, можно выделить ту ее главную особенность, которая состоит в том, что понятие «поведение» входит в весьма обширную группу понятий, находящих применение во многих, в ряде случаев весьма отдельных друг от друга областей знания, а также практической деятельности и обыденной жизни людей.

В наиболее общем виде понятие «поведение» определяется как «система внутренне взаимосвязанных действий, осуществляемых каким-либо сложным (обладающим некоторой организацией) объектом; эта система подчиняется определенной логике и направлена на реализацию той или иной функции, присущей данному объекту и требующей его взаимодействия с окружающей средой». Цель познания поведения, таким образом, состоит в раскрытии путей и закономерностей его формирования и реализации. Содержание понятия поведения, с одной стороны, определяется спецификой субъекта поведения, а с другой — отражает в своем развитии движение познавательного процесса, направленного на постижение его (поведения) сущности.

В качестве субъекта поведения в биологии (этологии) выступает, прежде всего, индивид (организм), который в то же время является объектом этологического исследования.

Распространение в современной биологии популяционистского стиля мышления, переход от исследования поведения отдельных особей к исследованию поведенческих закономерностей, складывающихся в различных по размерам и степени сложности группах особей, делают правомерным выделение популяционного и биоценотического уровней реализации поведения. Выход этологи-ческий исследований на надындивидуальные уровни организации (надорганизменные уровни) живого дает основания в качестве субъекта поведения рассматривать не только индивид, но и популяцию как основной способ существования вида.

Сложный многоуровневый характер формирования и регуляции поведения обуславливает и многоуровневый характер его познания, включающий соответственно биохимический, физический и психофизиологический, экологический и, возможно, другие аспекты исследования поведения, также включает в себя онтогенетический и эволюционный аспекты.

Изучение изменчивости, наследственности и наследственного осуществления свойств поведения, является важным вопросом в проблеме исследования животных и, в частности, их высшей нервной деятельности. Свойства поведения могут быть разбиты на три основные категории:

1. Специфические свойства поведения, как, например, злобность, пугливость собак, крыс и мышей. В основе этих специфических свойств поведения лежат, очевидно, сложные безусловные рефлексы поведения или Инстинкты.

2. Общие свойства нервной системы, которые могут быть охарактеризованы как степень общей возбужденности нервной системы, проявляющиеся в различной моторной активности животного.

3. Различная обучаемость животных (сюда должны быть отнесены работы по наследованию типов высшей нервной деятельности).

Важной задачей при этом является выявление элементарных единиц поведения. Сделанная в этологии попытка выделить такие единицы была продиктована необходимостью проводимого исследования.

1. В павловской школе основным объектом, единицей исследования являются рефлексы. Изучение высшей нервной деятельности, проведенное при помощи павловского метода, установило основные закономерности деятельности высших отделов нервной системы. Основной акцент в исследованиях И. Павлова сделан не на изучение закономерностей механизма рефлекторной деятельности, лежащей в основе поведения. Поведение животных не может быть отождествлено с рефлекторной деятельностью высших отделов нервной системы.

2. Изучение наследования и наследственного осуществления различных актов поведения по своему конечному выражению показывает, что акты поведения могут обуславливаться различными причинами. В одних случаях определенный акт поведения формируется на основе наследственных свойств; в других случаях он может формироваться в результате индивидуального опыта животного. Это только в крайних случаях. В большинстве же случаев формирование отдельных актов поведения происходит в результате тесного переплетения врожденных и индивидуально приобретенных компонентов, не дающих возможности отнести их ни к группе условных, ни к группе безусловных рефлексов.

3. Акты поведения, которые могут формироваться при различном сочетании условных и безусловных рефлексов, имеющих в то же время сходное внешнее выражения, должны быть обозначены каким-то иным термином, чем «условный» или «безусловный» рефлексы. Назовем их унитарными реакциями поведения. Под последними понимаются единые, целостные акты поведения, интегрированные условные и безусловные рефлексы. Унитарные реакции поведения рассматриваются как элементарные единицы поведения.

4. Унитарные реакции, объединяясь, конструируют более сложные этапы интеграции поведения, которые могут быть обозначены как биологические формы поведения. Под последними мы понимаем поведение, которое, будучи построено из отдельных унитарных реакций, связано с обеспечением основных жизненных отправлений организма. Соответственно этому выявляются следую щие, наиболее общие биологические формы поведенияживотных:

1) пищевая;

2) оборонительная;

3) половая;

4) форма поведения, связанная с заботой о потомстве;

5) форма поведения потомства по отношению к своим родителям.

Данные формы поведения являются наиболее общими, присущими почти всем позвоночным животным.

5. Биологические формы поведения, конструируясь как результат интеграции отдельных унитарных реакций, не являются простой суммой последних. Унитарные реакции поведения проявляются в зависимости от той формы по ведения, которая доминирует в данный момент в поведении животного.

 

9.7. Энергетические и энтропийные процессы (энергетика) жизни

 

Существует два мнения относительно применимости второго начала термодинамики (рассматривалось в главе 3) к живым системам. Одни ученые уверены в правомерности применимости, другие — нет. Первые утверждают это, не сомневаясь в том, что вообще физические законы достаточны для описания живых систем, поэтому, в частности, и второе начало вполне применимо к живым системам. Так, например, французский биолог, не физик, заметим, Ж. Моно отмечает, что «жизнь не следует из законов физики, но совместима с ними». Вторые отвергают применимость второго начала к живым системам, поскольку полагают, что это закон, регулирующий тепловые процессы, а в живом организме источником работы является не тепловая энергия.

Вероятно, для выяснения истины необходимо более широкое, чем термодинамическое или статистическое, определение энтропии. Поэтому-то мы рассматриваем этот вопрос здесь, в разделе биологических концепций.

Энтропия и эволюция. Вероятно, зарождение проблемы взаимосвязи между энтропией и эволюцией произошло в 1854 г., когда Гельмгольц и Больцман первыми обратили внимание на противоположные направленности закона возрастания энтропии и законов теории эволюции. Закон возрастания энтропии свидетельствует об увеличении беспорядка и «тепловой смерти» Вселенной, тогда как теория эволюции живых систем свидетельствует о процессах перехода от простых систем к более сложным системам, т. е. указывают путь возрастания порядка. После этого возникло много разных направлений в науке, связывающих энтропию, фактически второе начало, и эволюцию. Рассмотрим их, по возможности, последовательно.

Первое направление: некритическое восприятие второго начала. Данное направление характеризуется тем, что закон возрастания энтропии с его предсказанием тепловой смерти Вселенной, в частности, не имеет смысла согласовывать с наблюдаемой эволюцией мира в сторону усложнения.

Второе направление: флуктуационная гипотеза. В 1886 г. Больцман предсказывал тепловую смерть Вселенной, однако в 1898 году он выдвигает знаменитую флук-туационную гипотезу: окружающая нас макроскопическая область является неравновесной флуктуацией во Вселенной, в целом находящейся в равновесном состоянии.

В настоящее время эта гипотеза Больцмана не является популярной в силу своей антиэволюционности.

Третье направление: второе начало действует не везде. Суть этого направления заключается в тезисе неприменимости второго начала к живым системам, хотя экспериментальных доказательств несправедливости второго начала по отношению к живым системам не существует. Но трактовка второго начала, как физического закона, вероятно в этом случае не совсем правильна, является искусственной. Природа не знает деления переменных на «физические» и «структурные», это деление производит человек, изучающий природу. Если о втором начале говорить в широком смысле, когда энтропия имеет и физическую и структурную составляющие, то тогда, вероятно, закон возрастания «такой «энтропии распространяется и на живые системы.

Четвертое направление: концепция Шредингера (кстати, того самого Шредингера, одного из основателей квантовой механики, отца основного уравнения в ней). Это общепринятая в настоящее время концепция, но имеющая определенные трудности. В основе концепции Шредингера лежат две идеи.

Первая идея заключается в том, что живая система является сугубо неравновесной. Другими словами, эта идея выражает принцип устойчивого неравновесия живых систем.

Вторая идея, развивая первую, заключается в том, что живая система сохраняет неравновесность за счет внешней среды, черпая в ней необходимую упорядоченность, т. е. негэнтропию (отрицательную энтропию). Шредин-гер формулирует эту идею так: организм остается живым «только путем, постоянного извлечения из его окружающей среды отрицательной энтропии. Отрицательная энтропия — вот то, чем организм питается».

Краеугольным камнем концепции является понимание энтропии как меры беспорядка. Определенные трудности концепции как раз связаны с этим положением. Согласно Шредингеру, живые системы обладают свойством черпать порядок из окружающей среды. Наша планета получает высококачественную энергию от Солнца (качество энергии определяется малым потоком энтропии за счет высокой температуры поверхности Солнца), перерабатывает ее, что, конечно, сопровождается ростом энтропии в окружающей среде, и выбрасывает в космическое пространство вместе с наработанной энтропией. Именно это обстоятельство обеспечивает жизнедеятельность на Земле. Постоянство негэн-тропийного рациона Земли в обозримом интервале времени, по-видимому, и лежит в основе открытого Вернадским закона сохранения биомассы на Земле. Таким образом, на уровне общих представлений проблема существования жизни на Земле понятна. Однако вопросы молекулярной самоорганизации, принципы отбора и эволюции по-прежнему требуют объяснения на физическом или физико-химическом уровне. Развитие событий в последние десятилетия XX века показали ограниченность упрощенного представления энтропии как меры беспорядка.

Синергетика как первая модификация концепции Шредингера. Термин «синергетика» предложен Германом Хакеном для обозначения подхода, в котором процессы самоорганизации изучаются с разнообразных позиций, в том числе, и с позиции теории диссипативных структур, разработанной Ильей Пригожиным (см. более подробно в гл. 12). Этот подход развивается в физике, химии, биологии и в других дисциплинах. Синергетика вводит понятие диссипативной структуры как неравновесной структуры, возникающей за счет открытости системы и обязанной, таким образом, своим существованием дихотомии системы и среды: уменьшение энтропии в системе (упорядочение) мыслится здесь происходящим за счет роста энтропии (беспорядка) в среде. Основное содержание синергетики составляет анализ и решение нелинейных уравнений, описывающих системы. Есть некоторые общие черты решений, будь это автокаталитическая химическая реакция Белоусова-Жаботинского (см. последний пункт в гл. 8) или биологическая система, или нечто иное. Синергетика внесла в концепцию Шредингера поправку: дихотомия типа «система — среда» свойственна не только живым системам, но проявляется и в неживой природе — в гидродинамике (ячейки Бернара), физике лазеров, химии. Эти находки синергетики не разрушают концепцию Шредингера, но все же и не дают ответа на основной вопрос — откуда берется порядок в тех системах, которые служат «средой» для открытых систем с образующимися в них диссипативными структурами?

Синергетика и естественный отбор как вторая модификация концепции Шредингера. Сегодня роль естественного отбора в ЭВОЛЮЦИИ нельзя считать до конца ясной. Вероятно, естественный отбор является одним из механизмов эволюции, влияет каким-то образом на скорость эволюции. Здесь нас интересует частный вопрос: определяет ли естественный отбор общую направленность эволюции в сторону усложнения?

Ответ на этот вопрос в настоящее время отрицательный. Действительно, в живом мире наблюдаются всевозможные случаи: прогрессивная эволюция в сторону усложнения (ароморфоз, он же арогенез или морфофизиоло-гический прогресс), или, напротив, стабилизация уровня сложности (идиоадаптация). И во всех этих случаях естественный отбор ответственен за эти частные формы эволюции. Таким образом, сам по себе естественный отбор, хотя и является важным (но не до конца ясным) фактором эволюции, однако не ответственен полностью за общее направления эволюции.

Третья модификация концепции Шредингера: дихотомия «система — среда» ускоряет рост энтропии. Дихотомия «система — среда» снимает все противоречия эволюции, в сторону усложнения, со вторым началом. К примеру, «если рассматривать Солнечную систему как изолированную, то энтропия ее непрерывно увеличивается за счет излучения Солнца. На фоне этого грандиозного процесса уменьшение энтропии во всех живых организмах ничтожно мало», — так утверждает известный российский биофизик М. Волькенштейн.

Подведем итог обсуждения концепции Шредингера. Эта концепция оказалась плодотворной, способствовала развитию синергетики. Но, ответ на главный вопрос — откуда берется порядок, который затем потребляется дисси-пативными структурами, — остается. Дихотомия «система — среда» не может быть единственным источником порядка.

Пятое направление: рост энтропии может сопровождаться ростом сложности даже в изолированных системах. Данное направление представляет собой модификацию первого направления, в котором эволюция понимается как развитие в сторону возрастания энтропии. Рост сложности вообще не противоречит росту энтропии. Объяснение этого утверждения основано на разных модификациях понятия энтропии.

Порядок из хаоса и хаос из порядка: две ветви на древе познания. В указанной проблеме можно выделить три положения, могущие представить интерес.

Положение первое: развитая структура имеет большую вероятность, чем хаос. Это утверждение опирается на традиционные космологические теории возникновения Солнца и звезд (более упорядоченные структуры) из рассеянных облаков газа и пыли (системы с большим беспорядком) под действием сил гравитации. Здесь реализуется идея, согласно которой порядок возникает из хаоса. В космологических масштабах эта идея не вызывала сомнения не только во времена Ньютона, но еще ранее в Древней Греции. Наряду с идеей «порядок из хаоса» существовало, в первую очередь, в физике, течение «хаос из порядка», которое обосновано в виде формулировки закона возрастания энтропии. Таким образом, в истории человеческой мысли изначально борются две линии, которые могут быть отождествлены с идеями «порядок из хаоса» и «хаос из порядка». Можно сделать вывод: более вероятная структура (имеющая большую энтропию) может быть как более развитой (сложной), так и менее развитой, в зависимости от конкретной ситуации. Эти две линии постепенно сливаются.

Положение второе: то, что развитая структура имеет большую вероятность, чем хаос, определяется действием взаимодействия.

Третье положение: распространенные представления о большей вероятности равномерного распределения («хаоса» ) связаны с не правомерным распространением гипотезы о равновероятности микросостояния за пределы модели идеального газа.

Подводя итог краткому обсуждению развития линии человеческой мысли «порядок из хаоса» и «хаос из порядка» приходим к выводу: с ростом энтропии может иметь место как образование структур, так и их разрушение. Но это может означать только одно: энтропия не является мерой беспорядка — сложности. (Некоторые дополнительные сведения о хаосе и самоорганизации в контексте постнеклассического естествознания будут рассмотрены в главе 12).

Резюме

БИОЛОГИЯ ЭТО совокупность наук о ЖИВОЙ природе, многообразии существовавших и существующих живых организмов, их строении и функциях, происхождении, распространении и развитии, связях друг с другом и с неживой природой. Биология устанавливает закономерности, возникающие в живых системах во всех их проявлениях. К ним относятся: метаболизм (обмен веществ), наследственность, изменчивость, рост, раздражимость, подвижность, приспособляемость и др.

Общепринята следующая иерархия (структура) уровней организации живых систем, в которой отражены их сложность и закономерности функционирования:

1. Биосферный.

2. Уровень биогеоценозов (употребляется как синоним экосистем).

3. Популяционно-видовой уровень.

4. Организменный или органо-тканевый уровень.

5. Клеточный и субклеточный уровни.

6. Молекулярный уровень.

В проблеме происхождения жизни все существующие концепции разделились на две — голобиоз и генобиоз. Голобиоз основывается на первичности структур типа клеток, способных к элементарному обмену. Генобиоз, напротив, первичными признает системы со свойствами генетического кода. Проблема противостояния концепций должна принимать во внимание твердо установленные факты: диссимметрию, или хиральность нуклеиновых кислот ДНК и РНК, как фундаментальный признак живой материи, первичность молекулы РНК, наличия у нее автокаталитической способности, совмещения в ней черт фенотипа и генотипа.

Одна из последних, так называемых матричных, теорий происхождения жизни и возможности возникновения протоклеток и их структурных элементов, считает кристаллы апатита матрицей, на которой могли возникнуть молекулы ДНК, РНК, белки, нуклепротеиды, полисахариды. Данная гипотеза также учитывает тот фундаментальный факт, что все клеточные элементы и целые организмы являются жидкокристаллическими гомеостатическими структурами. Исходя из сказанного, можно вести речь о реальных механизмах возникновения жизни, основываясь на твердофазных эффектах в минеральных и жидких кристаллах. Участие минералов в процессе возникновения жизни делает его закономерным, а время процесса весьма кратким (за конечное число часов или суток, но никак не миллионы лет).

Вопросы для обсуждения

1. Модели и гипотезы происхождения жизни. Основываются, как правило, на особой роли минерала в истории Земли, среди которых не последняя роль отводится воде.

2. Иерархия уровней организации живой природы. Должна быть установлена область существования и функционирования ныне существующих на Земле организмов.

3. Главные характеристики любого живого организма.

4. Роль и функция высокомолекулярных органических соединений биологического происхождения, входящих в состав клеточного ядра и играющих важную роль в процессах жизнедеятельности всех организмов, в том числе в передаче наследственных признаков.

5. Систематика представителей животного и растительного мира.

6. Основные элементы, биотические связи, пищевые цепи в экосистемах.

7. Достижения и проблемы этологии.

 

 


Поделиться:



Популярное:

  1. S: Категория, обозначающая совокупность отношений, выражающих координацию существующих объектов, их расположение друг относительно друга и относительную величину
  2. The Noun (Имя существительное)
  3. Алгоритм формально-логических показателей правописания наречий, наречных сочетаний и сочетаний предлога с существительным
  4. Анализ осуществления хранения документации и сохранности документов на бумажной основе в МДОБУ «Сулпылар» с. Аскарово
  5. Анализ существующего мотивационного механизма в рекламном агентстве ООО «Рост»
  6. Анализ существующих зарубежных методик оценки угрозы банкротства
  7. Без Чистой воды, без Разума, без Мировоззрения, без Кооперации – дальнейшее существование Человека на Земле невозможно.
  8. Беспомощность разума в обосновании ценностей и недоказуемость существования Бога
  9. Биосфера и её строение, экосистемы, взаимоотношения организмов и среды
  10. Биосфера – арена жизни живых существ, а также жизни и хозяйственной деятельности человека.
  11. В XVIII столетии при европейских императорских дворцах (1) существовали оркестровые и хоровые капеллы (2) для руководства (3) которыми (4) приглашались выдающиеся музыканты.
  12. В случае систематического осуществления монополистической деятельности хозяйственным обществом, занимающим доминирующее положение.


Последнее изменение этой страницы: 2016-03-22; Просмотров: 1607; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.058 с.)
Главная | Случайная страница | Обратная связь