Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тензорезисторные преобразователи давления



В основе работы тензопреобразователей (тензорезисторов) лежит яв- ление тензоэффекта, заключающееся в изменении активного сопротивле- ния проводниковых и полупроводниковых материалов при их механиче- ской деформации.

По способу закрепления на чувствительных элементах датчиков они делятся на наклеиваемые и ненаклеиваемые, по конструктивному выпол- нению – на проволочные, фольговые, полупроводниковые.

Проволочные тензопреобразователи (рис. 3.14) конструктивно представляют собой отрезок тонкой проволоки l (диаметром 0, 02...0, 05 мм), которая зигзагообразно наклеена на тонкую бумажную или пленоч- ную основу (подложку) 2. Сверху проволока также закрыта тонкой бума- гой или лаковой пленкой 3, или фетром. Для включения в измерительную схему к концам проволоки припаиваются медные выводы 4.

Рис. 3.14. Проволочный тензопреобразователь:

1 – проволока; 2 – подложка;

3 – защитная пленка; 4 – медные выводы

 

Измерительной базой преобразователя является длина петель решет- ки А, величина которой лежит в пределах 1, 5...100 мм. Ширина решетки В равна 5...10 мм. Номинальное сопротивление 10...1000 Ом, номинальный ток – 30 мА.

Фольговые тензопреобразователи (рис. 3.15) представляют собой дальнейшее развитие проволочных. В них вместо решеток из проволоки применяют решетку из фольги толщиной 0, 004...0, 012 мм. Рисунок решет- ки выбирают таким, чтобы можно было снизить деформации, которая в фольговых тензопреобразователях практически сводится к нулю. На рис.

3.15, а представлена типовая форма фольгового тензопреобразователя, на рис. 3.15, б – короткобазовый преобразователь, на рис. 3.15, в – для наклей- ки на круглую мембрану.

 

Рис. 3.15. Фольговые тензопреобразователи:

а – типовой; б короткобазовый;

в – круговой

 

 

Фольговые тензопреобразователи могут пропускать больший ток,

чем проволочные, благодаря большей площади поперечного сечения про- водника при тех же размерах решетки и большей теплоотдаче, улучшаю- щей теплообмен, вследствие большей площади прилегания к деформируе- мой детали (чувствительному элементу датчика). Благодаря этому можно увеличить значение номинального тока до 0, 2 А. Сопротивление фольго- вых тензопреобразователей равно 30...250 Ом.

В качестве материала решеток проволочных и фольговых тензопре- образователей применяются как чистые металлы (серебро, платина, медь), так и сплавы (константан, нихром, манганин и др.).

Основными достоинствами проволочных и фольговых тензопреобра- зователей являются: практически полное отсутствие их влияния на дефор- мацию детали; линейность характеристики; низкая стоимость.

Основным недостатком является относительно низкий температур-

ный диапазон работоспособности: от -40 до +70оС.

Полупроводниковые тензопреобразователи отличаются от прово- лочных и фольговых большим (до 50%) изменением сопротивления при деформации и более высоким пределом чувствительности к температуре (в

10...20 раз).

Их преимущества заключаются в более высоком (в 60 раз) коэффи- циенте тензочувствительности, малых размерах (длина базы А = 3...10 мм), больших значениях выходного сигнала.

Наиболее сильно тензоэффект выражен в таких полупроводниковых материалах, как германий, кремний, антимонид индия, фосфид индия, ар- сенид галлия, антимонид галлия. Для тензопреобразователей чаще приме- няют германий и кремний в виде пластин толщиной 0, 03...0, 2 мм, шириной

0, 5...1 мм и длиной (базой) 3...15 мм.

Существует несколько способов изготовления полупроводниковых тензопреобразователей: вырезание из полупроводникового монокристалла; выращивание монокристалла посредством конденсации паров; нанесение на некоторые виды подложек тонких пленок со свойствами монокристаллов; получение диффузионным способом. Особенно широкое применение в изготовлении общепромышленных тензорезисторных ИПД в силу своих высоких механических, изолирующих и теплоустойчивых качеств получила технология КНС — «кремний на сапфире». Упрощенная конструкция чувствительного элемента тензопреобразователя, основанного на данной технологии, представлена на рис. 3.16. Чувствительный элемент состоит из сапфировой подложки 3, на которую диффузионным способом нанесены тензорезисторы 4 (чаще всего в виде уравновешенного измерительного моста Уитстона). Подложка припаяна твердым припоем 2 к титановой мембране 1.

 

Рис.3.16. Чувствительный элемент полупроводникового тензопреобразователя: 1- титановая мембрана; 2- серебросодержащий припой; 3- сапфировая подложка; 4 – тензорезисторы;

 

Чувствительный элемент включается в общую измерительную цепь преобразователя давления, структурная схема которого представлена на рис. 3.17.

Деформация измерительной мембраны под воздействием внешнего давления Р приводит к локальным деформациям тензорезисторного моста, состоящего из постоянных тензорезисторов R2, R3, R4 и переменного R1. В результате происходит разбаланс моста, который преобразуется электронным блоком и в унифицированный выходной электрический сигнал.

К преимуществам данного типа чувствительных элементов можно отнести достаточно высокий температурный диапазон работоспособности (от -160 до +1500°С), хорошую защищенность чувствительного элемента от воздействия любой агрессивной среды, налаженное серийное производство, низкую стоимость.

измерительная мембрана

Рис. 3.17. Структурная схема тензорезисторного преобразователя давления

 

Основными недостатками полупроводниковых тензопреобразователей являются: малая гибкость, небольшая механическая прочность, нелинейность характеристики, большой разброс характеристик однотипных

преобразователей, нестабильность параметров.

Несмотря на данные недостатки, основная масса датчиков давления в нашей стране выпускаются на основе тензорезисторных чувствительных элементов. Конструкция одной из моделей такого датчика представлена на рис. 3.18.

 

 

 

Рис. 3.18. Конструкция измеритель-

ного преобразователя давления:

 

1 – электронный блок; 2 –гермовывод;

3 – тензопреобразователь; 4 - канал; 5 – фланец; 6 - измерительная мембрана; 7 – измерительная камера; 8 – прокладка;

9 – основание; 10 – внутренняя полость.

 

Мембранный тензопреобразователь 3 размещен внутри основания 9. Внутренний канал 4 тензопреобразователя заполнен кремнийорганической жидкостью и отделен измеряемой среды металлической гофрированной мембраной 6, приваренной по наружному контуру к основанию 9. Полость 10 сообщена с окружающей атмосферой. Измеряемое давление подается в камеру 7 фланца 5, который уплотнен прокладкой 8. Измеряемое давление воздействует на мембрану 6 и через жидкость воздействует на мембрану тензопреобразователя, вызывая ее прогиб и изменение сопротивления тензорезисторов. Электрический сигнал от тензопреобразователя передается из измерительного блока в электронный блок 1 по проводам через гермовывод 2.

 

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 1707; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь