Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Пористые порошковые материалы
Отличительной особенностью является наличие равномерной объемной пористости, которая позволяет получать требуемые эксплуатационные свойства. Антифрикционные материалы (пористость 15…30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3…4 раза меньше, чем от шариковых подшипников. Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости скольжения могут достигать 20…30 м/с. Коэффициент трения подшипников – 0, 04…0, 06. Для изготовления используются бронзовые или железные порошки с добавлением графита (1…3 %). Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500oС. Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывют фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов. Фрикционные материалы (пористость 10…13 %) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200oС, а материал в объеме – до 500…600oС. Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350…400 МПа. Коэффициент трения при работе в масле – 0, 08…0, 15, при сухом трении – до 0, 7. По назначению компоненты фрикционных материалов разделяют на группы: а) основа – медь и ее сплавы – для рабочих температур 500…600oС, железо, никель и сплавы на их основе – для работы при сухом трении и температурах 1000…1200oС; б) твердые смазки – предотвращают микросхватывание при торможении и предохраняют фрикционный материал от износа; используют свинец, олово, висмут, графит, сульфиты бария и железа, нитрид бора; в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок, карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и др. Примерный состав сплава: медь – 60…70 %, олово – 7 %, свинец – 5 %, цинк – 5…10%, железо – 5…10 %, кремнезем или карбид кремния – 2…3 %, графит – 1…2 %. Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.). Фильтры (пористость 25…50 %) из спеченных металлических порошков по своим эксплуатационным характеристикам превосходят другие фильтрующие материалы, особенно когда требуется тонкая фильтрация. Они могут работать при температурах от –273oС до 900oС, быть коррозионностойкими и жаропрочными (можно очищать горячие газы). Спекание позволяет получать фильтрующие материалы с относительно прямыми тонкими порами одинакового размера. Изготавливают фильтры из порошков коррозионностойких материалов: бронзы, нержавеющих сталей, никеля, серебра, латуни и др. Для удовлетворения запросов металлургической промышленности разработаны материалы на основе никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений. Такие фильтры работают тысячи часов и поддаются регенерации в процессе работы. Их можно продуть, протравить, прожечь. Фильтрующие материалы выпускают в виде чашечек, цилиндров, втулок, дисков, плит. Размеры колеблются от дисков диаметром 1, 5 мм до плит размерами 450 х 1000 мм. Наиболее эффективно применение фильтров из нескольких слоев с различной пористостью и диаметром пор.
Прочие пористые изделия “Потеющие сплавы“ – материалы, через стенки которых к рабочей наружной поверхности детали поступает жидкость или газ. Благодаря испарению жидкости температура поверхности понижается (лопатки газовых турбин). Сплавы выпускаются на основе порошка нихроми с порами диаметром до 10…12 мкм при пористости 30 %. Сплавы этого типа используются и для решения обратной задачи: крылья самолетов покрывают пористым медно-никелевым слоем и подают через него на поверхность антифриз, препятствующий обледенению. Пеноматериалы – материалы с очень высокой пористьстью, 95…98 %. Например, плотность вольфрама 19, 3 г/см3, а пеновольфрама – всего 3 г/см3. Такие материалы используют в качестве легких заполнителей и теплоизоляции в авиационной технике.
Конструкционные порошковые материалы Спеченные стали. Типовыми порошковыми деталями являются кулачки, корпуса подшипников, ролики, звездочки распределительных валов, детали пишущих и вычислительных машин и другие. В основном это слабонагруженные детали, их изготавливают из порошка железа и графита. Средненагруженные детали изготавливают или двукратным прессованием – спеканием, или пропиткой спеченной детали медью или латунью. Детали сложной конфигурации (например, две шестерни на трубчатой оси) получают из отдельных заготовок, которые насаживают одну на другую с натягом и производят спекание. Для изготовления этой группы деталей используют смеси железо – медь – графит, железо – чугун, железо – графит – легирующие элементы. Особое место занимают шестерни и поршневые кольца. Шестерни в зависимости от условий работы изготавливают из железо – графита или из железо – графита с медью или легирующими элементами. Снижение стоимости шестерни при переходе с нарезки зубьев на спекание порошка составляет 30…80 %. Пропитка маслом позволяет обеспечить самосмазываемость шестерни, уменьшить износ и снизить шум при работе. Спеченные поршневые кольца изготавливают из смеси железного порошка с графитом, медью и сульфидом цинка (твердая смазка). Для повышения износостойкости делают двухслойные кольца: во внешний слой вводят хром и увеличивают содержание графита. Применение таких колец увеличивает пробег автомобильного двигателя, уменьшает его износ и сокращает расход масла. Высоколегированные порошковые стали, содержащие 20 % хрома и 15 % никеля, используют для изготовления изделий, работающих в агрессивных средах.
Спеченные цветные металлы Спеченный титан и его сплавы используют в виде полуфабрикатов (лист, трубы, пруток). Титановый каркас пропитывают магнием. Такие материалы хорошо обрабатываются давлением. Широко используются материалы на основе меди, например, изготавливают бронзо – графитные шестерни. Свойства спеченных латуней выше, чем литых, из-за большей однородности химического состава и отсутствия посторонних включений. Спеченные алюминиевые сплавы используют для изготовления поршней тяжело нагруженных двигателей внутреннего сгорания и других изделий, длительное время работающих при повышенных температурах, благодаря их повышенной жаропрочности и коррозионной стойкости. 3.5.6 Керамикометаллические материалы (керметы) содержат более 50% керамической фазы. В качестве керамической фазы используют тугоплавкие бориды, карбиды, оксиды и нитриды, в качестве металлической фазы – кобальт, никель, тугоплавкие металлы, стали. Керметы отличаются высокими жаростойкостью, износостойкостью, твердостью, прочностью. Они используются для изготовления деталей конструкций, работающих в агрессивных средах при высоких температурах (например, лопаток турбин, чехлов термопар). Частным случаем керметов являются твердые сплавы. Компактная металлокерамика представляет собой детали с небольшой остаточной пористостью (например, направляющие втулки клапанов). Металлокерамические твердые сплавы используют в виде пластинок к режущему инструменту. Некоторые мелкие режущие инструменты (сверла, фрезы) изготовляют целиком из твердых сплавов. Металлокерамические твердые сплавы имеют очень высокую твердость и сохраняют работоспособность до температуры 1000—1100 °С. Основной составляющей таких сплавов являются карбиды вольфрама, титана, тантала. В качестве связующего применяют кобальт. ГОСТ 3882 – 74 устанавливает выпуск металлокерамических сплавов трех групп: вольфрамовой – ВКЗ, ВКЗМ, ВК4, ВК4В, ВК6, ВК6М, ВК6В9, ВК8ВК, ВК10, ВК10М, ВК100М, ВК10КС, ВК11В, ВК11ВК, ВК15, ВК20, ВК20КС, ВК20К, ВК25; титано-вольфрамовой – Т30К4, Т15К6, Т14К8, Т5К12; титано-тантало-вольфрамовой – ТТ7К12, ТТ8К6, ТТ10К8Б, ТТ20К9. Массовое содержание компонентов и свойства марок металлокерамических твердых сплавов приведены в таблице 3. С увеличением содержания кобальта прочность сплавов возрастает, а твердость и износостойкость уменьшаются. В соответствии с этим и определяется область использования сплавов различных марок. Сплавы марок ВКЗ, ВКЗМ, ВК4, ВК4В, ВК6, ВК6М, ВК60М, ВК6В, ВК10, ВКЮМ, все сплавы титано-вольфрамовой и титано-тантало-вольфрамовой групп используют для обработки резанием металлов, пластмасс, камня; сплав ВК15 – для режущих инструментов по дереву. Буква «М» в маркировке означает мелкозернистую структуру, поэтому более высокую износоустойчивость по сравнению с теми же марками нормальной зернистости; буквы «В» или «КС» в конце маркировки указывают на более высокие эксплуатационную прочность и сопротивление ударам и выкрашиванию вследствие крупнозернистой структуры; буква «О» указывает на содержание 2 % карбида тантала, что несколько повышает твердость и износостойкость сплава. Недостатки порошковой металлургии: • сравнительно высокая стоимость металлических порошков; • необходимость спекания в защитной среде; • в некоторых случаях трудность изготовления изделий и заготовок больших размеров; • сложность получения металлов и сплавов в компактном беспористом состоянии.
Таблица 3.6–Значения эксплуатационных показателей Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1702; Нарушение авторского права страницы