Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


Управление синхронным двигателем




При управлении синхронным двигателем СД осуществляется пуск, отключение, форсировка возбуждения и гашение магнитного поля в аварийных режимах. Схема управления высоковольтным СД с постоянно включенным возбудителем В (генератором постоянного тока параллельного возбуждения) на валу показана на рис. 6.55.

При пуске включается рубильник Q1 и выключатель Q2; подаётся напряжение на блокировочное реле К1 и контактор гашения магнитного поля КМ1, который размыкает свой контакт КМ1, шунтирующий сопротивление гашения R. Одновременно замыкается контакт КМ1 в цепи контактора КМ2. Далее замыкается контакт К1, срабатывает реле К2 и подаётся напряжение на реле К3, которое при срабатывании размыкает свой контакт в цепи промежуточного реле К4.

После нажатия кнопки SB1 ("Пуск") включается контактор КМ2, который подаёт напряжение на включающую катушку QF1 высоковольтного выключателя. Последний подключает своими контактами QF статор двигателя к сети, отключает контактор КМ1 и реле К1. Начинается разгон двигателя. Одновременно замыкается контакт QF1 в цепях реле К4 и катушки QF2, но реле К4 не срабатывает, т. к. контакт К3 уже разомкнулся. Иначе включилось бы реле К4, т. к. реле гашения магнитного поля К5 ещё не успеет к этому моменту времени разомкнуть свой контакт. Это привело бы к включению катушки QF2 и отключению статора двигателя от сети.

После этого теряет питание реле К2, т. к. реле К1 было отключено, и с замедлением размыкает свой контакт К2. За ним с замедлением отключается реле К3, и замыкается его контакт К3 в цепи реле К4, которое снова не получит питания, т. к. реле К5 уже успеет разомкнуть свой контакт К5. На этом заканчивается работа аппаратов управления. Синхронный двигатель с асинхронной частотой вращения вала втягивается в синхронизм.

Остановка синхронного двигателя происходит после нажатия на кнопку SB2 ("Стоп"). Аналогично происходит отключение двигателя от сети при потере возбуждения: замыкается контакт К5 в цепи катушки реле К4, которое, срабатывая, включает катушку QF2. Это приводит к отключению статорной обмотки двигателя от сети.

Управление двигателем постоянного тока

Использование различных способов пуска в ход, регулирования частоты вращения вала и торможения двигателей постоянного тока (ДПТ) позволяет получить схемы с разнообразными свойствами, отвечающими условиям работы исполнительных механизмов. На рис. 6.56 приведена схема управления ДПТ параллельного возбуждения, предусматривающая пуск в функции времени, плавное регулирование частоты вращения и динамическое торможение при остановке или реверсировании. Регулирование частоты вращения вала осуществляется за счёт изменения магнитного потока возбуждения Фв посредством регулировочного реостата в цепи обмотки возбуждения ОВ. При отключении обмотки ОВ левым ножом рубильника Q2 она замыкается на резистор без разрыва цепи.

Реверсирование двигателя осуществляется переводом контроллера S1 в положение "Назад". В тот момент времени, когда контроллер окажется в нулевом положении, контакторы КМ1 и КМ2 потеряют питание и ДПТ отключится от сети. Включится контакт КМ1 в цепи реле К1, что повлечёт за собой последовательное отключение контактора КМ6, включение реле К2, отключение контактора КМ7 и введение пускового реостата Rп. Одновременно с этим будет подано напряжение на контактор КМ5 (контакт К3 замкнут), который включит резистор динамического торможения Rд.

Дальнейший перевод контроллера S1 в положение "Назад" и замыкание контактов не влияет на процесс торможения двигателя, т. к. на контакторы КМ3 и КМ4 может быть подано напряжение только через контакт К3, который в это время разомкнут. Замыкание этого контакта произойдёт после окончания торможения, когда реле К3 отпустит свой якорь. Одновременно отключатся контактор КМ5 и резистор Rд. Вслед за этим включатся контакторы КМ3, КМ4, отключится реле К1 и произойдёт пуск в обратном направлении. Остановка двигателя при любом направлении вращения вала производится посредством перевода контроллера S1 в нулевое положение. При этом происходит описанное выше динамическое торможение.

В схеме предусмотрены максимально-токовая защита (реле КА), нулевая (реле КU) и защита ослабления магнитного поля Фв или обрыва цепи возбуждения (реле К4). Все виды защит вызывают отпускание якоря реле KU. В результате, в любом крайнем положении контроллера S1 левые контакты катушек контакторов КМ6 и КМ7 отключаются от сети.

ВОПРОСЫ К ТЕМЕ 6


1. В каких единицах измеряется магнитное сопротивление и магнитное напряжение в схемах замещения магнитных цепей?
2. Чем обусловлена нелинейность магнитных цепей?
3. Как изменяется (увеличивается или уменьшается) индуктивность катушки при увеличении длины воздушного зазора в её магнитопроводе?
4. Почему при расчёте магнитной цепи, участки которой находятся в режиме насыщения, нельзя пренебрегать потоками рассеяния?
5. При проведении опыта с катушкой со сталью равномерно увеличивали действующее значение тока. Нарисуйте качественные графики изменения магнитного потока в магнитопроводе при отсутствии воздушного зазора и с воздушным промежутком в магнитопроводе.
6. Каково соотношение между индуктивностью катушки с однородным ферромагнитным магнитопроводом и его магнитным сопротивлением (катушка имеет обмотку с числом витков w)?
7. Зависит ли индуктивность катушки с ферромагнитным сердечником от частоты протекающего в ней тока?
8. Какой из материалов в большой степени подходит для изготовления постоянных магнитов?
9. Как будет изменяться напряжённость магнитного поля и магнитная индукция в постоянном магните, если уменьшить величину зазора посредством введения в него ферромагнитной пластины?
10. Дайте определение понятий «индуктивность рассеяния», «намагничивающий ток», «ток потерь».
11. Запишите закон Ома для участка магнитной цепи и законы Кирхгофа для разветвлённой магнитной цепи постоянного магнитного потока.
12. Определите отношение магнитных сопротивлений ферромагнитного участка длиной 20 см и воздушного зазора длиной 0,1 мм, сделав допущение, что вещество сердечника намагничено равномерно (µа = 100µ0 ) и что в силу малости воздушного промежутка магнитный поток в нём проходит через сечение, равное сечению сердечника.
13. Потери на вихревые токи в ферромагнитном материале при частоте f1 = 100 Гц равны DРcт = 0,5 Вт/кг. Определить потери на вихревые токи при частоте 400 Гц, если магнитная индукция изменяется по гармоническому закону и амплитуда её сохраняется неизменной. О т в е т: 8 Вт/кг.
14. Вычертите эквивалентную линейную модель нелинейной катушки со сталью с последовательным соединением эквивалентной индуктивности и эквивалентного сопротивления Rcт, учитывающего потери в магнитопроводе.
15. Магнитное поле в ферромагнитном сердечнике с сечением SM = 20 см2 характеризуется магнитной индукцией, изменяющейся по гармоническому закону с частотой f = 1000 Гц и амплитудой Bт = 0,8 Тл. На сердечник намотана обмотка, состоящая из w = 1000 витков. Определить наводимую ЭДС в обмотке.
16. Выразите параметры Rcт и Xcт ветви намагничивания схемы замещения катушки со сталью, приведенной на рис. 6.35, б, через параметры R’cт и X’cт эквивалентной схемы замещения, показанной на рис. 6.35, а.
17. Почему индуктивность L, определяемую потоком рассеяния катушки со сталью, можно принять постоянной, независимой от эквивалентного синусоидального тока i, протекающего по обмотке?
18. В упражнении 6.8 кривая намагничивания стали марки 1512 аппроксимирована гиперболическим синусом H = 0,245sh(6,85B). Определите процентное отклонение аппроксимационной кривой от кривой намагничивания в трёх справочных точках с координатами: Bт = 0,62 Тл, Н = 200 А/м; Bт = 1,29 Тл, Н = 1000 А/м и Bт = 1,45 Тл, Н = 2500 А/м.
19. Качественно начертите семейство ВАХ управляемой индуктивной катушки.
20. Приведите примеры устройств с постоянными и переменными магнитными потоками.

ВОПРОСЫ К ТЕМЕ 6


1. В каких единицах измеряется магнитное сопротивление и магнитное напряжение в схемах замещения магнитных цепей?
2. Чем обусловлена нелинейность магнитных цепей?
3. Как изменяется (увеличивается или уменьшается) индуктивность катушки при увеличении длины воздушного зазора в её магнитопроводе?
4. Почему при расчёте магнитной цепи, участки которой находятся в режиме насыщения, нельзя пренебрегать потоками рассеяния?
5. При проведении опыта с катушкой со сталью равномерно увеличивали действующее значение тока. Нарисуйте качественные графики изменения магнитного потока в магнитопроводе при отсутствии воздушного зазора и с воздушным промежутком в магнитопроводе.
6. Каково соотношение между индуктивностью катушки с однородным ферромагнитным магнитопроводом и его магнитным сопротивлением (катушка имеет обмотку с числом витков w)?
7. Зависит ли индуктивность катушки с ферромагнитным сердечником от частоты протекающего в ней тока?
8. Какой из материалов в большой степени подходит для изготовления постоянных магнитов?
9. Как будет изменяться напряжённость магнитного поля и магнитная индукция в постоянном магните, если уменьшить величину зазора посредством введения в него ферромагнитной пластины?
10. Дайте определение понятий «индуктивность рассеяния», «намагничивающий ток», «ток потерь».
11. Запишите закон Ома для участка магнитной цепи и законы Кирхгофа для разветвлённой магнитной цепи постоянного магнитного потока.
12. Определите отношение магнитных сопротивлений ферромагнитного участка длиной 20 см и воздушного зазора длиной 0,1 мм, сделав допущение, что вещество сердечника намагничено равномерно (µа = 100µ0 ) и что в силу малости воздушного промежутка магнитный поток в нём проходит через сечение, равное сечению сердечника.
13. Потери на вихревые токи в ферромагнитном материале при частоте f1 = 100 Гц равны DРcт = 0,5 Вт/кг. Определить потери на вихревые токи при частоте 400 Гц, если магнитная индукция изменяется по гармоническому закону и амплитуда её сохраняется неизменной. О т в е т: 8 Вт/кг.
14. Вычертите эквивалентную линейную модель нелинейной катушки со сталью с последовательным соединением эквивалентной индуктивности и эквивалентного сопротивления Rcт, учитывающего потери в магнитопроводе.
15. Магнитное поле в ферромагнитном сердечнике с сечением SM = 20 см2 характеризуется магнитной индукцией, изменяющейся по гармоническому закону с частотой f = 1000 Гц и амплитудой Bт = 0,8 Тл. На сердечник намотана обмотка, состоящая из w = 1000 витков. Определить наводимую ЭДС в обмотке.
16. Выразите параметры Rcт и Xcт ветви намагничивания схемы замещения катушки со сталью, приведенной на рис. 6.35, б, через параметры R’cт и X’cт эквивалентной схемы замещения, показанной на рис. 6.35, а.
17. Почему индуктивность L, определяемую потоком рассеяния катушки со сталью, можно принять постоянной, независимой от эквивалентного синусоидального тока i, протекающего по обмотке?
18. В упражнении 6.8 кривая намагничивания стали марки 1512 аппроксимирована гиперболическим синусом H = 0,245sh(6,85B). Определите процентное отклонение аппроксимационной кривой от кривой намагничивания в трёх справочных точках с координатами: Bт = 0,62 Тл, Н = 200 А/м; Bт = 1,29 Тл, Н = 1000 А/м и Bт = 1,45 Тл, Н = 2500 А/м.
19. Качественно начертите семейство ВАХ управляемой индуктивной катушки.
20. Приведите примеры устройств с постоянными и переменными магнитными потоками.

 

 





Рекомендуемые страницы:


Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 890; Нарушение авторского права страницы


lektsia.com 2007 - 2019 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.) Главная | Обратная связь