Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Обоснование задачи сравнения распределений признака
Распределения могут различаться по средним, дисперсиям, асимметрии, эксцессу и по сочетаниям этих параметров. Рассмотрим несколько примеров. На Рис. 4.1 представлены два распределения признака. Распределение 1 характеризуется меньшим диапазоном вариативности и меньшей дисперсией, чем распределение 2. В распределении 1 чаще встречаются значения признака, близкие к средней, а в распределении 2 чаще встречаются более высокие и более низкие, чем средняя, значения признака. Рис. 4.1. Кривые распределения признака с меньшим диапазоном вариативности признака (1) и большим диапазоном распределения признака (2); х - значения признака; f - относительная частота их встречаемости Именно такое соотношение может наблюдаться в распределении фенотипических признаков у мужчин (кривая 2) и женщин (кривая 1). Фенотипическая дисперсия мужского пола должна быть больше, чем женского (Геодакян В.А., 1974; 1993). Мужчины - это авангардная часть популяции, ответственная за поиск новых форм приспособления, поэтому у них чаще встречаются редкие крайние значения различных фенотипических признаков. Эти отклонения, по мнению В.А. Геодакяна, носят " футуристический" характер, это " пробы", включающие как будущие возможные пути эволюции, так и ошибки (Геодакян В.А., 1974, с. 381). В то же время женская часть популяции ответственна за сохранение уже накопленных изменений, поэтому у них чаще встречаются средние значения фенотипических признаков. Анализ реально получаемых в исследованиях распределений может позволить нам подтвердить или опровергнуть данные теоретические предположения. На Рис. 4.2 представлены два распределения, различающиеся по знаку асимметрии: распределение 1 характеризуется положительной асимметрией (левосторонней), а распределение 2 — отрицательной (правосторонней). Рис. 4.2. Кривые распределения признака с положительной (левосторонней) асимметрией (1) и отрицательной (правосторонней) асимметрией (2); х - значения признака; ( -относительная частота их встречаемости Данные кривые могут отражать распределение времени решения простой задачи (кривая 1) и трудной задачи (кривая 2). Простую задачу большинство испытуемых решают быстро, поэтому большая часть значений группируется слева. В то же время сама простота задачи может привести к тому, что некоторые испытуемые будут думать над нею очень, очень долго, дольше даже, чем над сложной. Трудную задачу большинство испытуемых решают в тенденции дольше, чем простую, но в то же время почти всегда находятся люди, которые решают ее мгновенно. Если мы докажем, что распределения статистически достоверно различаются, это может стать основой для построения классификаций задач и типологий испытуемых. Например, мы можем выявлять испытуемых со стандартным соотношением признаков: простую задачу они решают быстро, а трудную - медленно, — и испытуемых с нестандартным соотношением: простую задачу решают медленно, а трудную - быстро и т.п. Далее мы можем сравнить выявленные группы испытуемых по показателям мотивации достижения, так как известно, что лица с преобладанием стремления к успеху предпочитают задачи средней трудности, где вероятность успеха примерно 0.5, а лица с преобладанием стремления избегать неудачи предпочитают либо очень легкие, либо, наоборот, очень трудные задачи (МсСlelland D.С, Winter D.G., 1969). Таким образом, и здесь сопоставление форм распределения может дать начало научному поиску. Часто нам бывает полезно также сопоставить полученное эмпирическое распределение с теоретическим распределением. Например, для того, чтобы доказать, что оно подчиняется или, наоборот, не подчиняется нормальному закону распределения. Это лучше делать с помощью машинных программ обработки данных, особенно при больших объемах выборок. Подробные программы машинной обработки можно найти, например, в руководстве Э.В. Ивантер и А.В. Коросова (1992). В практических целях эмпирические распределения должны проверяться на " нормальность" в тех случаях, когда мы намерены использовать параметрические методы и критерии. В данном руководстве это относится лишь к методам дисперсионного анализа, поэтому способы проверки совпадения эмпирического распределения с нормальным описаны в Главе 7, посвященной однофакторному дисперсионному анализу. Традиционные для отечественной математической статистики критерии определения расхождения или согласия распределений - это метод χ 2К. Пирсона и критерий X Колмогорова-Смирнова. Оба эти метода требуют тщательной группировки данных и довольно сложных вычислений. Кроме того, возможности этих критериев в полной мере проявляются на больших выборках (n> 30). Тем не менее они могут оказаться столь незаменимыми, что исследователю придется пренебречь экономией времени и усилий. Например, они незаменимы в следующих двух случаях: в задачах, требующих доказательства неслучайности предпочтений в выборе из нескольких альтернатив; в задачах, требующих обнаружения точки максимального расхождения между двумя распределениями, которая затем используется для перегруппировки данных с целью применения критерия φ * (углового преобразования Фишера). Рассмотрим вначале традиционные методы определения расхождения распределений, а затем возможности использования критерия φ * Фишера. 4, 2. χ 2 критерий Пирсона Назначения критерия Критерий χ 2 применяется в двух целях; 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака[12]. Описание критерия Критерий χ 2отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований (см. п. 1.2). В самом простом случае альтернативного распределения " да - нет", " допустил брак - не допустил брака", " решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2. Допустим, некий наблюдатель фиксирует количество пешеходов, выбравших правую или левую из двух симметричных дорожек на пути из точки А в точку Б (см. Рис. 4.3). Допустим, в результате 70 наблюдений установлено, что Э\ человек выбрали правую дорожку, и лишь 19 - левую. С помощью критерия χ 2мы можем определить, отличается ли данное распределение выборов от равномерного распределения, при котором обе дорожки выбирались бы с одинаковой частотой. Это вариант сопоставления полученного эмпирического распределения с теоретическим. Такая задача может стоять, например, в прикладных психологических исследованиях, связанных с проектированием в архитектуре, системах сообщения и др. Но представим себе, что наблюдатель решает совершенно другую задачу: он занят проблемами билатерального регулирования. Совпадение полученного распределения с равномерным его интересует гораздо в меньшей степени, чем совпадение или несовпадение его данных с данными других исследователей. Ему известно, что люди с преобладанием правой ноги склонны делать круг против часовой стрелки, а люди с преобладанием левой ноги - круг по ходу часовой стрелки, и что в исследовании коллег[13] преобладание левой ноги было обнаружено у 26 человек из 100 обследованных. С помощью метода χ 2 он может сопоставить два эмпирических распределения: соотношение 51: 19 в собственной выборке и соотношение 74: 26 в выборке других исследователей. Это вариант сопоставления двух эмпирических распределений по простейшему альтернативному признаку (конечно, простейшему с математической точки зрения, а отнюдь не психологической). Аналогичным образом мы можем сопоставлять распределения выборов из трех и более альтернатив. Например, если в выборке из 50 человек 30 выбрали ответ (а), 15 человек - ответ (б) и 5 человек -ответ (в), то мы можем с помощью метода χ 2 проверить, отличается ли это распределение от равномерного распределения или от распределения ответов в другой выборке, где ответ (а) выбрали 10 человек, ответ (б) -25 человек, ответ (в) - 15 человек. В тех случаях, если признак измеряется количественно, скажем, в баллах, секундах или миллиметрах, нам, быть может, придется объединить все обилие значений признака в несколько разрядов. Например, если время решения задачи варьирует от 10 до 300 секунд, то мы можем ввести 10 или 5 разрядов, в зависимости от объема выборки. Например, это будут разряды: 0-50 секунд; 51-100 секунд; 101-150 секунд, и т. д. Затем мы с помощью метода χ 2будет сопоставлять частоты встречаемости разных разрядов признака, но в остальном принципиальная схема не меняется. При сопоставлении эмпирического распределения с теоретическим мы определяем степень расхождения между эмпирическими и теоретическими частотами. При сопоставлении двух эмпирических распределений мы определяем степень расхождения между эмпирическими частотами и теоретическими частотами, которые наблюдались бы в случае совпадения двух этих эмпирических распределений. Формулы расчета теоретических частот будут специально даны для каждого варианта сопоставлений. Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение у}. Гипотезы Возможны несколько вариантов гипотез, в зависимости от задач, которые мы перед собой ставим. Первый вариант: Н0: Полученное эмпирическое распределение признака не отличается от теоретического (например, равномерного) распределения. Н1: Полученное эмпирическое распределение признака отличается от теоретического распределения. Второй вариант: Н0: Эмпирическое распределение 1 не отличается от эмпирического распределения 2. Н1: Эмпирическое распределение 1 отличается от эмпирического распределения 2. Третий вариант: Н0: Эмпирические распределения 1, 2, 3, ... не различаются между собой. Н1: Эмпирические распределения 1, 2, 3, ... различаются между собой. Критерий χ 2 позволяет проверить все три варианта гипотез. Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 913; Нарушение авторского права страницы