Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Общие сведения, классификация и характеристики изоляторов высокого напряжения



Общие сведения

Изолятором называется законченная электромеханическая конструкция, предназначенная для электрической изоляции и механической связи частей электроустановок, находящихся под разными потенциалами.

В большинстве случаев в установках высокого напряжения (ВН) изоляторы используются для изоляции и механического крепления фаз по отношению к земле – шин распределительных устройств (РУ), проводов воздушных линий (ВЛ), токоведущих частей электрических аппаратов и др.; реже они используются в качестве междуфазовой изоляции (в основном в электрических аппаратах).

Все изоляторы изготовляются на определенные классы напряжения (Uн): 3; 6; 10; 15; 20; 35; 110; 150; 220; 330; 400; 500; 750 и 1150кВ. Чем выше Uн изоляторов, тем больше их габариты и масса, тем они сложнее в изготовлении, монтаже и эксплуатации.

 

нагрузкой 7, 5кН (750кГс).

Требования, предъявляемые к изоляторам

 

Требования, предъявляемые к изоляторам, определяются условиями их эксплуатации [1]:

1. Изоляторы должны обладать достаточной электрической прочностью не только при рабочем напряжении, но и при воздействии перенапряжений, которым они могут подвергнуться в электроустановках.

2. Изоляторы должны обладать достаточной механической прочностью, т.е. не разрушаться как при нормальных нагрузках, так и при электродинамических усилиях, возникающих в результате действия токов короткого замыкания.

3. Изоляторы должны выдерживать без повреждения резкое изменение температуры при перепаде в 45 – 80º С (в зависимости от размеров). Линейные изоляторы должны также выдерживать без повреждения медленное изменение температуры от -60 до +50º С.

4. Изоляторы должны быть стойкими к действию влаги (дождь, снег) и поверхностным электрическим разрядам.

5. Форма изоляторов должна быть по возможности такой, чтобы электрическое поле как внутри изолятора, так и на его внешней поверхности было однородным или приближалось к однородному.

6. При температурном расширении или сжатии металлической арматуры и керамического, стеклянного или полимерного диэлектрика в изоляторах не должно быть признаков механического повреждения или пробоя.

 

1.3 Классификация изоляторов высокого напряжения (рис. 1.1)

По условиям работы разделяются на изоляторы наружной и внутренней установки. Изоляторы, работающие на открытом воздухе (наружная установка), имеют сильно развитую поверхность юбки, а изоляторы внутренней установки (для работы в помещениях) имеют гладкую поверхность или небольшие ребра (рис.1.1.).

 

Рис 1.1 Классификация изоляторов высокого напряжения

 

Изоляторы внутренней установки изготовляются на напряжения 35кВ и ниже; для закрытых РУ (ЗРУ) более высоких классов напряжения (110 и 220кВ) используются изоляторы наружной установки на соответствующие номинальные напряжения.

Изоляторы наружной остановки изготовляются на все классы напряжений.

По своему назначению изоляторы разделяются на линейные и станционные [1].

Линейные изоляторы разделяются на штыревые и подвесные. Штыревые изоляторы применяются для изоляции проводов ВЛ напряжением 35кВ и ниже, подвесные – для изоляции проводов ВЛ 35кВ и выше. Подвесные в свою очередь разделяются на тарельчатые и стержневые. Тарельчатые комплектуются в гирлянды на соответствующие номинальные напряжения, стержневые используются на напряжении 27кВ для изоляции (фиксации) контактной сети электрифицированных железных дорог, а на 35 и 110кВ – в основном для изоляционных растяжек в аппаратах высокого напряжения (хотя и принадлежат к классу линейных). Штыревые и тарельчатые изоляторы выполняются из фарфора и стекла, стержневые – из фарфора и полимеров.

Станционные изоляторы разделяются на опорные и проходные. Изоляторы, используемые в электрических аппаратах, называются аппаратными (электрические машины, трансформаторы, выключатели и т.п.). Конструкции последних отличаются большим многообразием и в настоящем пособии не рассматриваются.

Опорные изоляторы разделяются на штыревые и стержневые. Штыревые изоляторы применяются для наружной установки и выпускаются промышленностью на напряжения 35кВ и ниже. Для более высокого напряжения (110 и 220кВ) используются колонки из штыревых изоляторов 35кВ.

Стержневые изоляторы выпускаются на напряжения 220кВ и ниже на все напряжения, в том числе Uн ≤ 35кВ – для внутренней установки. Для более высоких напряжений (330кВ и выше) они комплектуются в «треноги» из колонок стержневых изоляторов на меньшее номинальное напряжение, обычно 35кВ.

Проходные изоляторы на все напряжения выполняются с фарфоровой покрышкой, которая является основной изоляцией для изоляторов напряжением 35кВ и ниже. Это – изоляторы с воздушной полостью.

В качестве основной изоляции, заполняющей воздушную полость, могут использоваться барьеры в масле (маслонаполненные или маслобарьерные изоляторы) или бумага с маслом (на напряжении 35кВ – бумага на бакелитовом лаке). Для выравнивания напряженностей поля в слоях бумаги применены прокладки из фольги, образующие ряд последовательно включенных конденсаторов, поэтому такие изоляторы называются конденсаторными.

Маслобарьерные проходные изоляторы выпускаются на напряжения 110 и 220кВ, а бумажно-масляные конденсаторные – на 110кВ и выше. На напряжение 330кВ и выше – это единственный тип проходного изолятора.

 

Характеристики изоляторов


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-16; Просмотров: 3797; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь