Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физические свойства пластовых вод



Плотность

Плотность пластовых вод сильно зависит от минерализации, то есть содержания растворённых в ней солей. В среднем плотность пластовых вод изменяется в диапазоне 1010–1210 кг/м3.

Однако встречаются и исключения, например плотность пластовых вод может достигать величины 1450 кг/м3.

Пластовые воды месторождений нефти Томской области имеют небольшую плотность, они – слабоминерализованы. Величина их изменяется в интервале:

· для мезозойских залежей 1007–1014 кг/м3;

· для палеозойских 1014–1048 кг/м3;

· для сеноманского горизонта 1010 –1012 кг/м3.

 

Вязкость

Вязкость воды в пластовых условиях зависит от температуры и минерализации. С возрастанием минерализации пластовых вод вязкость их возрастает.

Наибольшую вязкость имеют воды хлоркальциевого типа воды. Вязкость их приблизительно в 1, 5–2 раза больше вязкости чистой воды (рис. 4.2). С возрастанием температуры вязкость пластовых вод уменьшается. Влияние давления на величину вязкости пластовых вод проявляется двояко.

В области низких температур (0–32оС) с возрастанием давления вязкость уменьшается, а в области температур выше 32 оС возрастает.

 

Рис. 4.2. Зависимости вязкости различного типа вод от температуры по В.И.Сергеевич и Т. П. Жузе:

1 – вода Каспийского моря при 29, 4 МПа;

2, 3 – хлоркальциевый тип воды Туймазинского месторождения

при 19, 6 МПа и 29, 4 МПа; 4 – чистая вода при 29, 4 МПа

 

Сжимаемость

Коэффициент сжимаемости пластовой воды характеризует относительное изменение объёма воды при изменении давления на единицу:

Вода – слабо сжимаемая система. Коэффициент сжимаемости воды изменяется для пластовых условий от 3, 7·10–10 Па–1 до 5, 0·10–10 Па–1.

При наличии растворённого газа величина коэффициента сжимаемости пластовой воды увеличивается. Коэффициент сжимаемости воды, насыщенной газом (β вг) можно приближённо оценивать по формуле

bвг = bв (1 + 0, 05× Г),

где bв – коэффициент сжимаемости чистой воды, Па–1.

Г – количество газа, растворённого в воде, м33.

Лекция 9

МОЛЕКУЛЯРНО-ПОВЕРХНОСТНЫЕ СВОЙСТВА

СИСТЕМЫ НЕФТЬ – ГАЗ – ВОДА – ПОРОДА

Нефтяной пласт представляет собой огромное скопление капиллярных каналов и трещин, поверхность которых очень велика. Мы уже видели, что иногда поверхность поровых каналов 1м3 нефтесодержащих пород составляет несколько гектаров. Поэтому закономерности движения нефти в пласте и ее вытеснения из пористой среды наряду с объемными свойствами жидкостей и пород (вязкость, плотность, сжимаемость и др.) во многом зависят от свойств пограничных слоев соприкасающихся фаз и процессов, происходящих на поверхности контакта нефти, газа и воды с породой.

Более интенсивное проявление свойств пограничных слоев по мере диспергирования (дробления) тела обусловлено возрастанием при этом числа поверхностных молекул по сравнению с числом молекул, находящихся внутри объема частиц. В результате с ростом дисперсности системы явления, происходящие в поверхностном слое, оказывают все большее влияние на движение воды и газа в нефтяных и газовых коллекторах.

Поверхностные явления и поверхностные свойства пластовых систем, по-видимому, сказались также и на процессах формирования нефтяных и газовых залежей. Так, например, степень гидрофобизации поверхности поровых каналов нефтью, строение газо-нефтяного и водо-нефтяного контактов, взаимное расположение жидкостей и газов в пористой среде, количественное соотношение остаточной воды и нефти и некоторые другие свойства пласта, обусловлены поверхностными и капиллярными явлениями, происходившими в пласте в процессе формирования залежи.

Очевидно также, что важнейшую проблему увеличения нефтеотдачи пластов нельзя решить без детального изучения процессов, происходящих на поверхностях контакта минералов с пластовыми жидкостями и свойств тонких слоев жидкостей, соприкасающихся с породой.

 

Капиллярные силы

Молекулярные силы взаимодействия между различными веществами, насыщающими горные породы, играют важную роль в процессах извлечения нефти и газа из недр. Капиллярные силы представляют собой одну из форм проявления межмолекулярных сил.

Характер молекулярного взаимодействия зависит от природы вещества. При нормальных расстояниях между молекулами вещества (при нормальных давлении и температуре) взаимодействие молекул выражается в притяжении их друг к другу. При сильном сближении молекул возникают силы отталкивания.

Сила взаимодействия молекул Fo сильно зависит от расстояния г между молекулами при малых г.

Функция Fo (r) для простых молекул, имеющих сферическую форму, имеет вид, показанный на рис. 5.1. Представим себе две жидкости А и В, настолько диспергированные одна в другой, что их молекулы равномерно распределены в объеме, который занимают эти жидкости.

Рис. 5.1

Пусть молекулы жидкости В сильнее притягиваются к молекулам жидкости А, чем между собой. Тогда любое случайное скопление молекул В (рис. 35) окажется недолговечным — молекулы жидкости А «растащат» молекулы жидкости В. Жидкость В является в данном случае полностью растворимой в жидкости А.

Если же взаимное притяжение молекул жидкости В намного больше притяжения молекул жидкости В к молекулам жидкости А или если между этими разносортными молекулами существуют силы отталкивания, то скопление молекул жидкости В, находящихся в жидкости А, будет устойчивым. Такие жидкости называются взаимно нерастворимыми или несмешивающимися. Следовательно, характер взаимодействия молекул различных веществ определяет их взаимную растворимость.

Рассмотрим схематично молекулы двух взаимно нерастворимых веществ, находящихся в соприкосновении друг с другом (рис. 5.2). Будем считать, что молекулы жидкостей А и В испытывают взаимное отталкивание, причем силы отталкивания действуют в направлении, перпендикулярном поверхности раздела жидкостей. Молекулы А и В испытывают также притяжение в сторону той жидкости, которой они принадлежат. Допустим теперь, что молекулы жидкости В,

Рис.5.2 Взаимное притяжение молекул А и В

находившиеся первоначально в сильно диспергированном состоянии в жидкости А, собрались в одну каплю. В том случае, когда молекулы жидкости В были сильно диспергированы в жидкости А, они обладали большей потенциальной энергией, чем когда собрались

Рис. 36
в каплю. Чтобы диспергировать жидкость В в жидкости А, нужно затратить дополнительную работу. Если не прилагать к системе, состоящей из жидкости А с диспергированной в ней жидкостью В, никакой дополнительной энергии, то молекулы жидкости В будут уменьшать свою потенциальную энергию, сливаясь в более крупные скопления. В конце концов жидкость В соединится в одну каплю. Эта капля будет иметь форму шара, если пренебрегать действием силы тяжести, поскольку потенциальная энергия молекул жидкости В в данном случае примет наименьшее значение. Следует заметить, что самопроизвольное соединение капель жидкости В будет происходить не во всех случаях. Если, например, на внешней оболочке капель присутствуют вещества, вызывающие отталкивание капель, то это будет приводить к образованию стойкой эмульсии жидкости В в жидкости А.

Итак, молекулы жидкости В, находящиеся на границе с жидкостью А, будут испытывать отталкивание от молекул жидкости А и притяжение со стороны молекул жидкости В (см. рис. 5.2). Таким образом, возникнет состояние, аналогичное тому, как будто бы капля жидкости В сжимается упругой оболочкой. В результате ( давление внутри капли не будет равно давлению в жидкости А, окружающей каплю.

Рассматривая поверхностные силы, действующие на границе раздела двух жидкостей в капле, содержащей большее число молекул, можно уже не учитывать взаимодействие отдельных молекул, а перейти к использованию понятий, свойственных механике сплошных сред. Учитывая это, рассмотрим участок поверхностей, разделяющих две жидкости в капле (рис. 5.3).

 

 

Рис.5.3 Действие усилий на элемент поверхности

раздела жидкостей А и В.

Верхний элемент поверхности относится к жидкости А, а нижний — к жидкости В; dl1 и dl2 — длины дуг поверхности, имеющие радиусы R1 и R2, a α — угол между соответствующими направлениями радиуса. Из равновесия этого участка поверхностей вытекает, что к единице длины сечения внешней оболочки капли должны быть приложена сила σ а, а к внутренней оболочке – сила σ в.

Условие равновесия поверхностей раздела двух жидкостей выражается формулой Лапласа

(5.1)

 

Величина σ называется поверхностным натяжением на границе раздела двух жидкостей. Поверхностное натяжение имеет размерность силы, отнесенной к расстоянию. Его можно определить также как энергию, приходящуюся на единицу поверхности раздела между двумя жидкостями.

Если капля жидкости В имеет форму шара, то R1 = R2, и из формулы (5.1) получаем формулу Кельвина

. (5.2)

Поверхностное натяжение (σ ) характеризует избыток свободной энергии, сосредоточенной на одном квадратном сантиметре площади поверхностного слоя на границе раздела двух фаз или работу образования новой поверхности в изотермических условиях:

. (5.3)

Величину коэффициента поверхностного натяжения можно определить как величину работы, необходимой для образования 1 см2 новой поверхности (Дж/м2, Н/м).

Поверхностное натяжение является свойством не отдельно взятого вещества, а свойством поверхности контакта двух или большего числа веществ. Можно говорить, например, о поверхностном натяжении воды на границе с воздухом или на границе с нефтью, однако без указания контактирующего с водой вещества понятие поверхностного натяжения теряет смысл. Одно и то же вещество может иметь различные величины поверхностного натяжения на границе с различными веществами. Так, вода на границе с воздухом имеет поверхностное натяжение 75·10~3Н/м, а на границе с нефтью – около 30·10~3Н/м.

По поверхностному натяжению пластовых жидкостей на различных поверхностях раздела можно судить о свойствах соприкасающихся фаз, о закономерностях взаимодействия жидких и твердых тел, о процессах адсорбции, о количественном и качественном составе полярных компонентов в жидкости, об интенсивности проявления капиллярных сил и т. д. Влияние температуры и давления на поверхностное натяжение жидкостей можно установить исходя из молекулярного механизма возникновения свободной поверхностной энергии и энергетической сущности поверхностного натяжения.

Коэффициент поверхностного натяжения (σ ) зависит от давления, температуры, газового фактора, свойств флюидов. Поверхностное натяжение с увеличением давления понижается, тем сильнее, чем ниже температура. Поверхностное натяжение уменьшается с повышением температуры. Общий характер изменения величины поверхностного натяжения с изменением давления (рис. 5.4) и температуры для нефти такой же, как и у воды.

Влияние этих факторов на величину поверхностное натяжение (σ ) можно установить исходя из молекулярного механизма возникновения свободной поверхностной энергии и энергетической сущности поверхностного натяжения. С увеличением давления величина (σ ) жидкости на границе с газом понижается. С повышением температуры происходит ослабление межмолекулярных сил и величина поверхностного натяжения чистой жидкости (чистой воды) на границе с паром уменьшается.

Рис. 5.4 Зависимость поверхностного натяжения

небитдагской нефти от давления

1 – на границе с метаном (при t = 20°С);

2 – на границе с метаном (при t = 60°С);

3 – на границе с этан-пропановой смесью.

 

С увеличением количества растворенного газа в нефти величина поверхностного натяжения нефти на границе с газом уменьшается, а на границе с водой возрастает.

Количественные изменения величины поверхностного натяжения зависят от многих дополнительных факторов: химического состава нефти, состава газа (рис. 5.4, кривая 3), количества растворенного газа, количества и природы полярных компонентов и других факторов.

Поверхностное натяжение нефти на границе с водой или другой жидкостью зависит от следующих факторов.

1. От количества имеющихся в ней поверхностно-активных компонентов: асфальтенов, смолистых веществ, нафтеновых кислот. Нефть, содержащая наименьшее количество указанных веществ, имеет наибольшую величину поверхностного натяжения на границе с водой. Наоборот, нефти, содержащие наибольшее количество поверхностно-активных веществ, имеют наименьшую величину поверхностного натяжения на границе с водой. Эта закономерность объясняется физическим смыслом величины поверхностного натяжения.

2. От природы другой жидкости, с которой нефть соприкасается. Например, при соприкосновении с водой в большинстве случаев поверхностное натяжение нефти меньше, чем при соприкосновении с воздухом. Чем выше плотность нефти, тем больше ее поверхностное натяжение на границе с воздухом и тем меньше на границе с водой.

Поверхностное натяжение большинства пластовых вод гидрокарбонатного типа (воды щелочные) на границе с некоторыми нефтями весьма невелико, от 1 до 7, 5 мН/м (идёт диспергирование фаз).

Хлоркальцевый тип вод (жесткие пластовые воды, кислые по природе) имеет более высокие значения величин поверхностного натяжения на границе с пластовой нефтью, от 7 до 14 мН/м.

Морская вода на границе с нефтью продуктивной толщи Апшеронского полуострова имеет также высокое поверхностное натяжение, от 14 до 23 мН/м.

 

Смачивание и краевой угол

Величину поверхностного натяжения твердого тела непосредственно измерить трудно. Поэтому для исследования процессов взаимодействия твердых тел с жидкостями и газом пользуются косвенными методами изучения поверхностных явлений, протекающих на контактах между твердыми и жидкими телами. К таким методам относятся измерение работы адгезии ( Адгезия измеряется работой, которую надо затратить, чтобы оторвать твердое тело от жидкости в направлении нормали к поверхности раздела ), исследование теплоты смачивания и углов избирательного смачивания и т. д.

Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие – несмешиваемые жидкости или жидкость и газ.

Капля жидкости может растекаться по поверхности, если поверхность хорошо смачивается, а если поверхность плохо смачивается, то капля растекаться не будет (рис. 5.5).

Гидрофильная Гидрофобная Нейтральная

Рис. 5.5

 

Интенсивность смачивания характеризуется величиной краевого угла смачивания Θ, образованного поверхностью твёрдого тела с касательной, проведённой к поверхности жидкости из точки её соприкосновения с поверхностью (рис. 5.5, 5.6). Краевой угол (Θ ) измеряется в сторону более полярной фазы, в сторону воды. Принято условно обозначать цифрой 1 водную фазу, цифрой 2 – углеводородную жидкость или газ, цифрой 3 – твёрдое тело.

Рис. 5.6

Из условия равновесия векторов (предполагая, что краевой угол Θ отвечает термодинамическому равновесию) получим

σ 2, 3 = σ 1, 3 + σ 1, 2·cosΘ (5.4)

откуда получается выражение для краевого угла (Θ ):

cos Q = (σ 2, 3 – σ 1, 3)/ σ 1, 2.. (5.5)

В этих уравнениях величины σ 3, 2 и σ 13 практически неизвестны. Поэтому о соотношении поверхностных натяжений σ 3, 2 и σ 13 (т. е. о процессах, происходящих на границе твердого тела с другими фазами) судят по углу , который служит мерой смачивания жидкостями поверхности твердого тела и, следовательно, представляет

косвенную характеристику взаимодействия твердого тела с другими фазами.

Величина , если исключить влияние силы тяжести, не зависит от размеров капли и определяется лишь молекулярными свойствами поверхности твердого тела и соприкасающихся фаз. Поэтому, исходя из теории поверхностных явлений, можно установить связь краевого угла смачивания с поверхностным натяжением между твердым телом и жидкостью. Например, поверхность должна лучше смачиваться той жидкостью, которая обладает меньшей разностью полярностей между твердым телом и жидкостью, т. е. меньшей величиной поверхностного натяжения на их разделе (рис. 5.5).

Высокополярные жидкости, т. е. жидкости с высоким поверхностным натяжением, хуже смачивают твердую поверхность, чем жидкости малополярные (т. е. обладающие меньшим поверхностным натяжением). Например, такая высокополярная жидкость, как ртуть, смачивает только некоторые металлы; вода – жидкость, менее полярная, чем ртуть, поэтому вода смачивает, кроме металлов, многие минералы и кристаллические соли; малополярные масла смачивают на границе с воздухом все известные твердые тела.

По величине угла избирательного смачивания, образующегося при контакте воды, нефти и породы, наряду с другими параметрами можно судить о качестве вод и их отмывающей и нефтевымывающей способности. Лучше отмывают нефть воды, хорошо смачивающие породу. Поэтому изучению явлений смачивания в нефтепромысловом деле уделяется очень большое внимание.

 


Поделиться:



Популярное:

  1. Any и его производные имеют другое значение в утвердительном предложении.
  2. E) Горные породы, климат, почва, биокомпоненты, вода.
  3. Gerund переводится на русский язык существительным, деепричастием, инфинитивом или целым предложением.
  4. Hекотоpые мысли по поводy каpт ценностей
  5. I разделение – скотоводство от земледелия.
  6. I. Руководство к совершению Всенощного бдения.
  7. I.Расчет подающих трубопроводов системы горячего водоснабжения при отсутствии циркуляции.
  8. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема конкретизации.
  9. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема опущения.
  10. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема примечаний.
  11. II. РАЗРЕШЕНИЕ НА ПРОИЗВОДСТВО ОГНЕВЫХ РАБОТ
  12. II. Руководство маневровой работой


Последнее изменение этой страницы: 2016-03-25; Просмотров: 4207; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь