Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Типы и назначение компьютеров



Существование различных типов компьютеров определяется различием задач, для решения которых они предназначены. С течением времени появляются новые типы задач, что приводит к появлению новых типов компьютеров. Поэтому приведенное ниже деление очень условно.

Различают:

- суперкомпьютеры;

- специализированные компьютеры-серверы;

- встроенные компьютеры-невидимки (микропроцессоры);

- персональные компьютеры (ПК).

Для выполнения изначального назначения компьютеров - вычислений - на рубеже 60-70 годов были созданы специализированные ЭВМ, так называемые суперкомпьютеры.

Суперкомпьютеры - специальный тип компьютеров, создающихся для решения предельно сложных вычислительных задач (составления прогнозов, моделирования сложных явлений, обработки сверхбольших объемов информации).

Компьютер, работающий в локальной или глобальной сети, может специализироваться на оказании информационных услуг другим компьютерам, на обслуживании других компьютеров. Такой компьютер называется сервером от английского слова serve (в переводе - обслуживать, управлять). Например, в локальной сети один из компьютеров (имеющей скоростной жесткий диск большой ёмкости) может выполнять функции файлового сервера, а другой (к которому присоединен принтер) сервера печати.

Кроме привычных компьютеров с клавиатурами, мониторами, дисководами, сегодняшний мир вещей наполнен компьютерами-невидимками. Микропроцессор представляет собой компьютер в миниатюре. Массовое распространение микропроцессоры получили и в производстве, там, где управление может быть сведено к отдаче ограниченной последовательности команд. Микропроцессоры незаменимы в современной технике. Например, управление современным двигателем - обеспечение экономии расхода топлива, ограничение максимальной скорости движения, контроль исправности и т. д. - немыслимо без использования микропроцессоров. Еще одной перспективной сферой их использования является бытовая техника.

12 августа 1981 года корпорация IBM представила первую в мире модель персонального компьютера (ПК, PC). Персональные компьютеры совершили компьютерную революцию в профессиональной деятельности миллионов людей и оказали огромное влияние на все стороны жизни человеческого общества.

Задачи

1. Первая ламповая ЭВМ называлась:

- Марк-1;

- ЭНИАК;

- Цузе 1.

2. Кто из перечисленных ученых не связан с историей создания вычислительных машин:

- Джордж Буль;

- Чарльз Беббидж;

- Исаак Ньютон;

- Леонардо да Винчи.

3. Первые ЭВМ были созданы в XX веке...

- в 40-е годы;

- в 60-е годы;

- в 70-е годы;

- в 80-е годы.

4. Основной элементной базой ЭВМ четвертого поколения являются:

- полупроводники;

- электромеханические схемы;

- электровакуумные лампы;

- СБИС.

 

Раздел 6. Аппаратное обеспечение компьютера

Рис. 24. Структура аппаратного обеспечения ПК.

1. Монитор 2. Материнская плата 3. Процессор 4. IDE-слот 5. Оперативная память 6. Платы расширения (видео, звуковая…) 7. Блок питания 8. Привод для дисков (CD/ DVD) 9. Винчестер 10. Клавиатура 11. Мышь

Рис. 25. Расположение основных устройств, входящих в состав ПК.

Таблица 15.

Основные блоки   системный блок | монитор | устройства ввода-вывода
Устройства в составе системного блока материнская плата | центральный процессор | оперативная память | жёсткий диск | графическая плата | звуковая плата | сетевая плата | дисковод | CD-привод | DVD-привод | TV-тюнер
Периферийные (внешние) устройства принтер | сканер | графопостроитель (плоттер) | модем | микрофон | акустика | ИБП – источник бесперебойного питания | клавиатура | мышь | графический планшет | тачпад | вебкамера | фотокамера

Устройства, входящие в состав системного блока

Материнская плата

Материнская плата — печатная плата, на которой осуществляется монтаж большинства компонентов компьютерной системы. Название происходит от английского motherboard, иногда используется сокращение MB или слово mainboard — главная плата.

Материнская плата обеспечивает связь между всеми устройствами ПК, посредством передачи сигнала от одного устройства к другому.

На поверхности материнской платы имеется большое количество разъемов предназначенных для установки других устройств: sockets – гнезда для процессоров; slots – разъемы под оперативную память и платы расширения; контроллеры портов ввода/ вывода.

Центральный процессор

Центральный процессор, или центральное процессорное устройство (ЦПУ) (англ. central processing unit — CPU) — основная микросхема компьютера, в которой и производятся все вычисления. ЦПУ имеет размеры 5*5*0, 3 см, устанавливается на материнской плате. На процессоре установлен большой радиатор, охлаждаемый вентилятором (cooler). Конструктивно процессор состоит из ячеек, в которых данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются как команды, управляющие обработкой данных в других регистрах. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров Intel Pentium (а именно они наиболее распространены на сегодняшний день в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе процессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная, хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Основные параметры процессоров

Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров имели рабочее напряжение 5В, а в настоящее время оно составляет менее 3В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры были 4-разрядными. Современные процессоры семейства Intel Pentium являются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур. В персональном компьютере тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше производительность процессора. Первые процессоры могли работать с частотой не выше 4, 77 МГц, а сегодня рабочие частоты, некоторых процессоров уже превосходят 500 МГц.

Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводников и микросхем. По чисто физическим причинам материнская плата не может работать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты на коэффициент 3; 3, 5; 4; 4, 5; 5 и более.

Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например с оперативной памятью. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область – так называемую кэш-память. Это как бы «сверхоперативная память». Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Высокопроизводительные процессоры комплектуют повышенным объемом кэш-памяти.

Нередко кэш-память распределяют по нескольким уровням. Кэш первого уровня выполняется в том же кристалле, что и сам процессор, и имеет объем порядка десятков Кбайт. Кэш второго уровня находится либо в кристалле процессора, либо в том же узле, что и процессор, хотя и исполняется на отдельном кристалле. Кэш-память первого и второго уровня работает на частоте, согласованной с частотой ядра процессора.

Кэш-память третьего уровня выполняют на быстродействующих микросхемах типа SRAM и размещают на материнской плате вблизи процессора. Ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

История и производители процессоров

Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он был 4-разрядный, содержал 2300 транзисторов, работал на тактовой частоте 108 кГц и стоил 300$. Его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных процессоров.

Наиболее популярные процессоры сегодня производят фирмы Intel и AMD. Среди процессоров от Intel: Pentium 4, Celeron (упрощённый вариант Pentium), Core 2 Duo (двуядерный), Xeon (серия процессоров для серверов), Itanium и др. AMD, появившаяся на рынке позже, имеет в своей линейке процессоры: Duron, Sempron (сравним с Intel Celeron), Athlon, Athlon 64, Athlon 64 X2, Opteron и др.

Оперативная память

Оперативная память (ОЗУ — оперативное запоминающее устройство). Существует два типа оперативной памяти - память с произвольным доступом (RAM - Random Access Memory) и память, доступная только на чтение (ROM - Read Only Memory). Процессор ЭВМ может обмениваться данными с оперативной памятью с очень высокой скоростью, на несколько порядков превышающей скорость доступа к другим носителям информации, например дискам.

Оперативная память с произвольным доступом (RAM) служит для размещения программ, данных и промежуточных результатов вычислений в процессе работы компьютера. Данные могут выбираться из памяти в произвольном порядке, а не строго последовательно, как это имеет место, например, при работе с магнитной лентой.

Память, доступная только на чтение (ROM) используется для постоянного размещения определенных программ, например, программы начальной загрузки ЭВМ – BIOS (basic input-output system – базовая система ввода-вывода). В процессе работы компьютера содержимое этой памяти не может быть изменено.

Оперативная память - энергозависимая, т. е. данные в ней хранятся только до выключения ПК. Для долговременного хранения информации служат дискеты, винчестеры, компакт-диски и т. п.

Конструктивно элементы памяти выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить объем общей оперативной памяти компьютера. Емкость модулей памяти кратна степени числа 2: 128, 256, 512, 1024 Mb...

Виды RAM:

Полупроводниковая статическая (SRAM) — ячейки представляют собой полупроводниковые триггеры. Достоинства — небольшое энергопотребление, высокое быстродействие. Недостатки — малый объём, высокая стоимость. Сейчас широко используется в качестве кеш-памяти процессоров.

Полупроводниковая динамическая (DRAM) — каждая ячейка представляет собой конденсатор. Достоинства — низкая стоимость, большой объём. Недостатки — необходимость периодического считывания и перезаписи каждой ячейки — т. н. «регенерации», и, как следствие, понижение быстродействия, большое энергопотребление. Обычно используется в качестве оперативной памяти компьютеров.

Жесткий диск

Накопитель на жёстких магнитных дисках, жёсткий диск или винчестер (англ. Hard Disk Drive, HDD) — энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке воздуха, образуемой при быстром вращении дисков.

Название «винчестер» жёсткий диск получил благодаря фирме IBM, которая в 1973 выпустила жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе диски и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером».

В Европе и Америке название «винчестер» вышло из употребления в 1990-х годах; в российском же компьютерном сленге название «винчестер» сохранилось, сократившись до слова «винт».

Характеристики

Интерфейс — способ, использующийся для передачи данных. Современные накопители могут использовать интерфейсы ATA (IDE, EIDE), Serial ATA, SCSI, SAS, FireWire, USB и Fibre Channel.

Ёмкость — количество данных, которые могут храниться накопителем. Ёмкость современных устройств может достигать до 1.5 Tб, в ПК сегодня распространены винчестеры ёмкостью 80, 120, 200, 320 Гб. В отличие от принятой в информатике системе приставок, обозначающих кратную 1024 величину (кило=1024), производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186, 2 Гб.

Физический размер — почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3, 5, либо 2, 5 дюйма. Последние чаще применяются в ноутбуках.

Скорость вращения шпинделя — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10000 (персональные компьютеры), 10000 и 15000 об./мин. (серверы и высокопроизводительные рабочие станции).

Производители

Большая часть всех винчестеров производятся всего несколькими компаниями: Seagate, Western Digital, Samsung, а также ранее принадлежавшим IBM подразделением по производству дисков фирмы Hitachi. Fujitsu продолжает выпускать жёсткие диски для ноутбуков и SCSI-диски, но покинула массовый рынок в 2001 году. Toshiba является основным производителем 2, 5- и 1, 8-дюймовых ЖД для ноутбуков. Одним из лидеров в производстве дисков являлась компания Maxtor, хорошо известная своими «умными» алгоритмами кэширования. В 2006 году состоялось слияние Seagate и Maxtor.

Графическая плата

Графическая плата (известна также как графическая карта, видеокарта, видеоадаптер) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Первый IBM PC не предусматривал возможности вывода графических изображений. Современный ПК позволяет выводить на экран двух- и трёхмерную графику и полноцветное видео.

Обычно видеокарта является платой расширения и вставляется в специальный разъём (ISA, VLB, PCI, AGP, PCI-Express) для видеокарт на материнской плате, но бывает и встроенной.

Современная графическая плата состоит из следующих основных частей:

Графический процессор (GPU) — занимается расчетами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчеты для обработки команд трехмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору.

Видеоконтроллер — отвечает за формирование изображения в видеопамяти.

Видеопамять — выполняет роль буфера, в котором в цифровом формате хранится изображение, предназначенное для вывода на экран монитора. Ёмкость видеопамяти так же, как и оперативной памяти кратна степени числа два и на сегодняшний день измеряется в мегабайтах.

Цифро-аналоговый преобразователь (ЦАП) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет RGB, что в сумме дает 16.7 млн. цветов.

Основные производители

ATI Technologies, NVIDIA Corporation, Matrox, 3D Labs, 3dfx (приобретена NVidia), S3 Graphics, XGI Technology Inc. (приобретена ATI в 2006 г.)

Звуковая плата

Звуковая плата (также называемая звуковая карта, аудиоадаптер) используется для записи и воспроизведения различных звуковых сигналов: речи, музыки, шумовых эффектов.

IBM-PC проектировался не как мультимедийная машина, а инструмент для решения серьёзных научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер — был звук встроенного динамика бипера, сообщавший о неисправностях.

Любая современная звуковая карта может использовать несколько способов воспроизведения звука. Одним из простейших является преобразование ранее оцифрованного сигнала снова в аналоговый. Глубина оцифровки сигнала (например, 8 или 16 бит) определяет качество записи и, соответственно, воспроизведения. Так, 8-разрядное преобразование обеспечивает качество звучания кассетного магнитофона, а 16-разрядное — качество компакт-диска.

В настоящее время звуковые карты чаще бывают встроенными в материнскую плату, но выпускаются также и как отдельные платы расширения.

На материнскую плату звуковая плата устанавливается в слоты ISA (устаревший формат) или РСI (современный формат). Когда звуковая плата установлена, на задней панели корпуса компьютера появляются порты для подключения колонок, наушников, микрофона…

Основные производители

Creative Labs, Diamond Multimedia System Inc., ESS Technology, KYE Systems (Genius), Turtle Beach Systems, Yamaha Media Technology.

Сетевая плата

Сетевая плата (также известная как сетевая карта, сетевой адаптер, Ethernet card, NIC (англ. network interface card)) — печатная плата, позволяющая взаимодействовать компьютерам между собой, посредством локальной сети.

Обычно, сетевая плата идёт как отдельное устройство и вставляется в слоты расширения материнской платы (в основном — PCI, ранние модели использовали шину ISA). На современных материнских платах, сетевой адаптер все чаще является встроенным, таким образом, покупать отдельную плату не нужно.

На сетевой плате имеются разъёмы для подключения кабеля витой пары и/или BNC-коннектор для коаксиального кабеля.

Сетевая карта относится к устройствам коммуникации (связи). Кроме нее к устройствам коммуникации относится модем, но он служит для организации связи в глобальной сети (Интернет). Скорость передачи данных устройствами коммуникации измеряется в битах в секунду (а также в Кбит/с и Мбит/с). Модем, используемый для подключения домашнего компьютера к сети Интернет по телефонной линии, обычно обеспечивает пропускную способность до 56 Кбит/c, а сетевая карта - до 100 Мбит/с.

TV-тюнер

TV-тюнер (англ. TV tuner, ТВ-тюнер) — устройство, предназначенное для приёма телевизионного сигнала в различных форматах вещания (PAL, SÉ CAM, NTSC) с показом на компьютере или просто на отдельном мониторе. Tune означает “настраивать” (на длину волны).

TV-тюнер может представлять собой как отдельное устройство с радиовходом и аудио-видео выходами, так и плату расширения. Внешние ТВ-тюнеры подключаются к компьютеру через порт USB или между компьютером и дисплеем через видеокабель, внутренние вставляются в слот ISA, или PCI, или PCI-Express.

Кроме того, большинство современных ТВ-тюнеров принимают FM-радиостанции и могут использоваться для захвата видео.

Дисковод 3, 5’’

Дискета — портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х — начале 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД — «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД — «накопитель на гибких магнитных дисках»).

Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в защитную оболочку, защищающую магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства — дисковода (флоппи-дисковода).

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

Первая дискета диаметром в 200 мм (8″ ) и ёмкостью 80 килобайт была представлена фирмой IBM в 1971. В 1981 году фирма Sony выпустила на рынок дискету диаметром 3½ " (90 мм). Поздняя её версия имеет объём 1440 килобайт или 1, 40 мегабайт. Именно этот тип дискеты стал стандартом и используется по сей день.

Из-за малой ёмкости и скорости обмена данными дискета является отживающим носителем информации, поэтому производители не уделяют больше внимания повышению ее надежности, скорее наоборот. Следует запомнить, что дискета не предназначена для того, чтобы непосредственно открывать и сохранять на ней файлы (хотя это можно делать, но не рекомендуется). Дискету следует использовать только для транспортировки данных.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-09; Просмотров: 1135; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.043 с.)
Главная | Случайная страница | Обратная связь