Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Коммерческий рынок нанотехнологий в России



Объем и динамика рынка

В настоящий момент доля России в общемировом технологическом секторе составляет около 0.3 %, а на рынке нанотехнологий — 0.04 %. Во многом здесь сказался тот факт, что Россия обратила свое внимание на наноразработки на 7–10 лет позже, чем зарубежные страны.
В результате, сейчас Россия значительно отстает от мировых лидеров отрасли — США, Японии и ЕС как по показателям развития НИОКР, так и по коммерциализации изобретений. Об этом свидетельствует и число наших международных нанотехнологических патентов — в 2013 году их было всего около 30 (удельный вес российских изобретений — менее 0.2 %).
Российский рынок нанотехнологий находится на начальном этапе становления, коммерческие приложения нанотехнологий в промышленности практически отсутствуют. Численность предприятий, которые уже приступили к этапу коммерциализации своих изобретений, составляет менее 20 % от общего числа участников сектора.

Российский рынок аналитического оборудования для исследования наноструктур.

Российский рынок аналитического оборудования для исследования наноструктур в последнее время устойчиво растет: с 2009 по 20013 годы показатели прироста сектора находились на уровне 30–50 %. Активное развитие рынка
началось в 2005 году в связи с введением господдержки исследований в области нанотехнологий и материалов. Рост исследовательской активности, в свою очередь, стимулировал спрос на аналитическое оборудование.
По данным Research.Techart, объем российского рынка аналитического оборудования (сюда включены электронные и сканирующие зондовые микроскопы, а также лазерные корреляционные спектрометры и дифрактометры МУРР) в 2013 году составил 1.7 млрд. руб., из них более 90 % пришлось на импортируемые приборы. В количественном выражении объем продаж аналитического оборудования в 2013 году составил около 400 штук.

Российский рынок наноматериалов.

Нанопорошки

Нанопорошки

Нанопорошки – только один из многих имеющихся на сегодняшний день наноматериалов. Большинство из них, такие как, например, дендримеры, фуллерин, нанотрубки, нанопрокладки и нанопоры, производятся из ограниченного количества видов сырья. А нанопорошки можно производить из сотен различных материалов. Все наноматериалы, которые производятся в настоящее время, подразделяются на четыре группы: оксиды металлов, сложные оксиды (состоящих из двух и более металлов), порошки чистых металлов и смеси. Оксиды металлов составляют не менее 80% всей производимых порошков. Порошки чистых металлов составляют значительную и все возрастающую долю всего объема производства. Сложные оксиды и смеси имеются в ограниченном количестве. Однако ожидается, что их использование возрастет в долгосрочной перспективе.

Соединенные Штаты отличаются самым большим объемом производства и потребления. Благодаря щедрой поддержке правительства, IPOs и высокой заинтересованности потребителей, американские производители занимаются как научными исследованиями, так и коммерческим производством. Почти все типы нанопорошков, и все порошки, включенные в данное обследование, поставляются хотя бы одним американским производителем. США обеспечивают Европу и, в меньшей степени, Азию многими порошками, необходимыми для промышленности. До сих пор Национальная нанотехнологическая инициатива осуществлялась успешно; производство и потребление, согласно прогнозам, будут расти все быстрее и быстрее.

В Канаде, особенно в провинциях Онтарио и Квебек, располагается большое число производителей и потребителей нанопорошков. В дополнение ко многим ведущим в промышленном производстве нанопорошкам, в Канаде производится широкое разнообразие экзотических редкоземельных оксидов и порошков чистых металлов.

В обеих странах имеются значительные залежи наиболее важного сырья, за исключением некоторых редкоземельных элементов, импортируемых из Китая и Японии. Двусторонняя торговля между США и Канадой находится на высоком уровне благодаря НАФТА (САССТ) и другим торговым соглашениям. Поэтому обе эти страны можно объединить в один регион – Северная Америка.

Европейский Союз, в который входят все страны-производители порошков, за исключением Швейцарии, долго принимал законодательство, необходимое для развития нанотехнологий. Некоторые государства-члены ЕС, такие как Германия и Соединенное Королевство, на раннем этапе разработали свои собственные инициативы и сейчас являются движущей силой европейских научных исследований, производства и потребления нанопорошков. В ЕС нет крупных месторождений сырья. Хотя в настоящее время это не является препятствием для производства нанопорошков, впоследствии такой дефицит может дорого обойтись европейским производителям, поскольку крупные поставщики увеличивают внутреннее производство.

В общем, чем севернее расположена страна, тем больше в ней интерес к нанотехнологиям. В Германии имеется много высококвалифицированных исследователей, хорошо финансируемых лабораторий и промышленных клиентов-энтузиастов. Германские производители порошков изготавливают несколько типов высококачественных порошков для биотехнологий. В настоящее время в британских университетах существуют программы на получение ученых степеней по производству и использованию нанопорошков. Британские компании предлагают широкий выбор порошков. Многие британские специалисты в настоящее время работают в США. Скандинавские страны переживают период повышенного интереса к каждому аспекту нанотенологий, что вдохновляет дальнейшие исследования. Ряд европейских стран, включая Швейцарию, производит ограниченные количества и ассортимент нанопорошков.

Ввиду наличия общих интересов, близости, объединенных инициатив и отсутствия торговых барьеров эти страны сгруппированы вместе в категории Европа.

Структура исследований и производства наноматериалов в азиатских странах имеет много различий. В Корее есть большое число производителей, выпускающих продукты, подобные американским. В Японии головные компании зачастую создают дочерние предприятия по производству порошков для внутреннего использования. Китай предпочитает строить большие региональные заводы, каждый из которых обладает мощным производственным потенциалом. Изобилие редкоземельных оксидов в регионе, даже в Японии, обеспечивает достаточно сырья для будущего применения в электронике. Несмотря на разногласия в прошлом, эти три компании, плюс несколько мелких компаний на Тайване, активно торгуют друг с другом.

Благодаря наличию полезных ископаемых, крупным внутренним инвестициям, многочисленным трудовым ресурсам и торговым преимуществам Китай может стать серьезным участником рынка наноматериалов в ближайшем будущем. Монополия Китая на многие редкоземельные ископаемые и недавно введенный 12% налог на экспорт нанопорошков может иметь отрицательные последствия для западных поставщиков и производителей.

Ряд других стран немного занимаются наноматериалами. Израиль, Австралия и Южная Африка медленно наращивают внутреннее производство и потребление. Индия, крупный поставщик сырья, еще не приступила к крупномасштабным исследованиям и производству.

Наноалмазы

Наноалмазы (общая информация)

Наноалмаз — углеродная наноструктура. Имеет кристаллическую решётку типа алмаза (две ГЦК сдвинутые друг относительно друга на 1/4 главной диагонали). Характерный размер одного нанокристалла 10—100 ангстрем. Наноалмазы или ультрадисперсные алмазы можно рассматривать как специфический наноуглеродный материал, входящий в обширное и все более популярное семейство наноуглеродных кластеров, состоящее из фуллеренов, нанотрубок, нанографита, «луковичной» формы углерода. Алмазные частицы обладают уникальными различными физико-химическими свойствами. Свойства наноалмазов существенным образом зависят от метода получения.

Детонационные наноалмазы

В СССР под руководством Е. И. Забабахина учёные ВНИИТФ в 1962 г. К. В. Волков, В. В. Даниленко и В. И. Елина синтезировали алмазы ударным сжатием графита и сажи в сферических и цилиндрических ампулах сохранения, а в 1963 г для повышения выхода алмаза использовали сжатие смеси графита с металлом-охладителем. В 1962 г. Даниленко предложил замену ампульного синтеза на безампульный с проведением взрывов во взрывной камере. При этом графит помещался непосредственно в цилиндрический заряд из сплава тротил/гексоген ТГ40, а для подавления графитизации и снижения скорости разгрузки образующегося алмаза заряд окружался водяной оболочкой. Это обеспечило резкое увеличение выхода алмаза. В июле 1963 г был выполнен контрольный опыт с зарядом без графита, подтвердивший предположение о синтезе алмаза из углерода продуктов детонации (ПД). На основании фазовой диаграммы углерода и значений P, t точки Жуге при детонационном разложении взрывчатого вещества было показано, что свободный углерод должен конденсироваться в форме алмаза. При этом взрывчатое вещество должно обладать отрицательным кислородным балансом. Главным преимуществом конденсации атомарного углерода продуктов детонации по сравнению с синтезом из графита является то, что в данном процессе отсутствует необходимость расходования энергии и времени на разрушение или перестройку исходной кристаллической решётки графита. Проблема в этом случае заключается в сохранении ультрадисперсного алмаза (УДА) от окисления и графитизации. В 1963—1965 гг показано решающее значение охлаждения ПД за счёт превращения потенциальной энергии ПД в кинетическую энергию оболочки, окружающей заряд. Заряд ПГ 40, сформированный в форме удлиненного цилиндра, давал выход УДА 8-12 % от массы заряда при содержании УДА в шихте до 75 %. В США первое сообщение о синтезе УДА появилось только в 1988 г. Их содержание в саже, по сообщению авторов, составило 25 %. Таким образом, России принадлежит приоритет в синтезе детонационных наноалмазов. Однако, несмотря на серию удачных экспериментальных работ в самом начале 60-х гг, далее исследования были практически приостановлены, поскольку интенсивное развитие в то время получало исследование и производства алмазов каталитического синтеза, а внедрение новых методик синтеза УДА встретило препятствие со стороны неподготовленной промышленности. В 1982 г синтез наноалмазов был налажен сразу в нескольких научных центрах СССР, однако мощности производства существенно превосходили потребность в наноалмазах. В 1993 г ряд производств был свернут и вплоть до 2003 г его не возобновляли. До настоящего времени сохранились производства ДНА в Санкт-Петербурге, Снежинске, Белоруссии и на Украине. В последнее время интерес к ДНА начал проявляться у исследователей во всем мире. ДНА получают путем химических превращений на фронте детонационной волны при взрыве мощных взрывчатых веществ (смесь тротила и гексогена). В газах, образующихся при детонации ряда взрывчатых веществ, содержится значительное количество свободного углерода, из которого в условиях высоких температуры и давлений, достигаемых при взрыве, формируется алмазная фаза углерода. Наноалмаз- самая устойчивая термодинамическая форма углерода. На сегодняшний день не существует единой теории образования ДНА.Согласно представлениям о термодинамике образования ДНА, основным аспектом, обеспечивающим возможность возникновения алмазов в процессе адиабатического распада углерода взрывчатого вещества с отрицательным кислородным балансом, является факт конденсации свободного углерода в алмазной или жидкой фазе. Адиабатическое расширение продуктов детонации следует за детонацией. При этом условия стабильности алмаза сохраняются недолго. Если плотность продуктов детонации близка к начальной плотности взрывчатого вещества, то условия стабильности алмаза сменяются условиями стабильности графита. При адиабатическом разлете давление продуктов детонации падает быстрее температуры, поэтому термодинамическое состояние углеродной компоненты оказывается в области устойчивости графита при высокой температуре, что способствует фазовому переходу алмаза в графит. Но при некоторой температуре скорость графитизации понижается и поэтому на этих (последних) стадиях разлета продуктов детонации количество углерода, перешедшего из алмазной фазы в графитную, становится пренебрежимо малым — это «заморозка» графитизации и сохранение алмазной фазы. Таким образом, переход алмаз-графит происходит при условии превышения температуры заморозки графитизации. Если Т> > Тзам, то весь алмаз успевает превратиться в графит, и в остывших продуктах детонации УДА не обнаруживается. Таким образом, температура имеет решающее значение, и в этом процессе она во многом определяется конфигурацией заряда (теплопроводностью среды). Оптимальными условиями образования УДА в детонационной волне и его сохранения является относительно высокое давление при низкой температуре продуктов детонации, соответствующие точке Чепмена-Жуге. Таким образом, в детонационном синтезе наноалмазов присутствуют 3 стадии:

1.Образование свободного углерода в результате детонационного превращения взрывчатого вещества.

2.Быстрое расширение продуктов детонации и охлаждение алмазных частиц ниже температуры графитизации.

3.Интенсивный тепломассообмен между продуктами детонации и средой, окружающей заряд.

Начиная с конца 90-х, НА использовались как компонент сорбентов смазок, полировочных композиций и как добавка к электролитическим и др. осадительным ваннам. До сих пор много потенциальных применений этого наноматериала, включая биомедицинские области и области структурных композитов, остаются неосвоенными. Детонационный синтез алмазов является сравнительно дешевым и быстрым по времени способом производства искусственных алмазов. Однако, среди семейства искусственных алмазов детонационные наноалмазы на сегодняшний день занимают наименее выгодное положение. Это обусловлено многими факторами: трудоемкая технология очистки алмазов детонационного синтеза, вызванная как низким процентным содержанием алмазного углерода в продуктах детонации, так и дополнительным загрязнением со стороны детонационной камеры; высокая степень их полидисперсности как следствие стихийности детонационного процесса. Но главным, по-видимому, препятствием к широкому использованию ДНА является невоспроизводимость получаемого продукта в партиях, выраженная в разноразмерности, разном элементном и функциональном составе; отсутствие единого стандарта параметров среди разных производителей и как следствие, точного определения наноалмаза детонационного синтеза. Поэтому, любые работы по исследованию, модифицированию, нахождению новых областей применения ДНА, являются актуальными, поскольку открывают пути использования данного продукта. Это объясняет повышенный интерес исследователей во всем мире в 2000-х годах к наноалмазам вообще и к детонационным наноалмазам в частности, как к наиболее доступным из всего семейства алмазов.

В настоящее время термин «наноалмаз» применяется, вообще говоря, к нескольким объектам: наноалмазные кристаллы, встречающиеся в метеоритах, кристаллические зерна поликристаллических алмазных пленок и, наконец, наноалмазные порошки и суспензии, получаемые методом детонационного синтеза.

УДА можно получать с заданными свойствами и успешно применять в качестве сорбентов, катализаторов, лекарственных препаратов.

Способы их добычи

На сегодня существует несколько способов получения алмазных наночастиц. Среди них наиболее распространены следующие:

1. получение из природных алмазов физическими методами;

2. синтез при сверхвысоких давлениях и температурах;

3. электронно- и ионно-лучевые методы, использующие облучение углеродсодержащего материала пучками электронов и ионами аргона;

4. химическое осаждение углеродосодержащего пара при высоких температурах и давлениях;

5. детонационный синтез;

6. электрохимическое осаждение на аноде.

Применение наноалмазов

Оказалось, что детонационные наноалмазы обладают рядом необычных свойств. Исследования последних лет показали, что наноалмазы могут быть использованы для создания нано композиционных материалов, элементов наноэлектроники, селективных адсорбентов и катализаторов, объектов медико-биологического использования. Применение наноалмазов:

Полировальные композиции

Современная лазерная техника, оптика и твёрдотельная электроника, включая микро, опто-, акусто-, магнито-, СВЧ-, криоэлектронику и др. разделы, базируются на большом разнообразии материалов. Здесь требуется получение высокосовершенной по геометрическим, структурным и химическим свойствам поверхности кристаллов посредством технологии финишного химико-механического полирования (ХМП). В Институте общей физики им. А.М. Прохорова РАН разработан ряд (устойчивых более года) химически активных полировальных композиций на основе наноалмазов. Композиции прошли апробацию в технологии обработки металлов, полупроводников и диэлектриков. Некоторые из них способны эффективно полировать несколько (от 3 до 15) кристаллов, имеющих различный состав, кристаллографическую ориентацию, электропроводность, способ получения и назначение. Шероховатость рельефа большинства кристаллов составляет доли и единицы нанометров. На поверхности отсутствуют сколы, трещины, микроцарапины, участки травления и др. макродефекты, поверхностный слой не содержит дислокаций обработки и упругих напряжений. Физическим Институтом им. П. Н. Лебедева РАН, Московским государственным институтом стали и сплавов и научно-производственным объединением “Детонационные Наноалмазы” создан научно-учебный и производственный центр “Наноповерхность”. В настоящее время белорусская фирма “Синта” разрабатывает проект по производству наноалмазов глубокой очистки в объеме около 1000 кг в год, на базе которых возможно изготовление различных полировальных композиций. В НПО «Алтай» (Бийск) разработаны Технические условия " Составы полирующие на основе детонационных наноалмазов " БИКА" (ТУ 07508902-204-2008).

Гальванические покрытия

Наноалмазы опробованы как добавка в металлические гальванические покрытия. Наиболее продвинутая область это хром-алмазные износостойкие покрытия для нефтедобычи. Получение композиционных покрытий основано на способности наноалмазов размерами 4-6 нм соосаждаться с металлами при их электрохимическом и химическом восстановлении из растворов их солей. Это приводит к образованию двухфазного композиционного электрохимического покрытия, состоящего из металлической матрицы и внедренных в нее дисперсных частиц наноалмазов. Суть в том, что при сравнительно небольшой добавке (1% наноалмазов по массе в покрытии) наночастицы вызывают большое число центров кристаллизации. В результате получается нанокристаллическая структура хрома с размером кристаллитов порядка 10 нм. Кроме того, множество граничных слоев металл-алмаз имеет следствием высокую износостойкость и повышенную микротвёрдость. Нанокристаллиты хрома обеспечивают полное копирование рельефа поверхности детали, что существенно увеличивает предельные напряжения сдвигового и нормального отрыва покрытия от основы. В настоящее время освоено получение покрытий толщиной 1—500 мкм и площадью 500х600х1300 мм. Специалисты ЗАО «ЭКА» совместно с ООО «РАМ» разработали передовую технологию нанесения металл-алмазных покрытий с нанокристаллической структурой на технику, работающую в экстремальных условиях, в частности, в агрессивных средах. Исследования проводились в соответствии с «Федеральной программой развития наноиндустрии в Российской Федерации до 2015 г.». На основе данной технологии компанией внедрены инновационные, принципиально новые золотниковые клапаны модели «Норма» для установок электроцентробежных (УЭЦН) и штанговых глубинных (ШГН) нефтяных насосов.

Присадки к автомобильным маслам.

Принципиально новый вид добавки в смазочные материалы на основе ультрадисперсных алмазов предназначен для значительного улучшения защитных свойств смазочных материалов, увеличения их эффективного срока службы, восстановления и защиты от износа узлов трения различных машин и механизмов. При этом обеспечивается: а) увеличение межремонтного ресурса различных машин и механизмов более чем в 2 раза (отдельных узлов в 5-7 раз); б) восстановление и защита механизмов с предремонтным состоянием и возможность продолжения их эксплуатации значительное время без капитального ремонта; в) увеличение срока службы масел и смазок более чем в 2 раза; г) снижение расхода горюче-смазочных материалов. Технология принята к внедрению на ОАО «ГМК «Норильский никель». Может быть, автотранспортным предприятиям компаний, работающих в условиях Крайнего Севера, таких, например, как АЛРОСА или «Полюс Золото», будет полезно изучить этот опыт.

УДА в медицине

Исследования в этой области находятся пока на начальной стадии. В частности, сообщается о создании на плоской подложке надмолекулярной структуры окисная пленка алюминия - адгезионный слой – наноалмаз - люцифераза. Показано, что фермент сохраняет каталитическую активность в данной структуре и она может рассматриваться как прототип люминесцентного биочипа для использования в биолюминесцентном анализе. В Институте биофизики Сибирского отделения РАН опробовано применение наноалмазов для выделения рекомбинантного апообелина и рекомбинантной люциферазы из бактериальных клеток E. coli. Применение наноалмазов упрощает процедуры очистки белков, сокращает время их выделения, исключает из процесса специализированное хроматографическое оборудование, позволяет получить высокоочищенные препараты апообелина и люциферазы с выходом белков порядка 45%.

Зародыши для выращивания алмазных пленок

Наноалмазы используют при исследовании искусственных CVD алмазных пленок, например в физико-технический институт им. Иоффе РАН (Санкт-Петербург), ТРИНИТИ (Троицк). Суспензия ультрадисперсного наноалмаза была использована для создания высокой плотности центров нуклеации алмаза на различных подложках. Из газовой фазы СВЧ разряда на подложки ряда материалов, обработанные с использованием ультрадисперсного наноалмаза, осаждены высококачественные легированные алмазные пленки с целью их использования в качестве электродов для электрохимии. Для кремниевых подложек получено равномерное распределение центров нуклеации с концентрацией не менее 1010 cm-2. Для сплошных пленок проведено измерение электрохимических кривых ток - потенциал. С использованием селективной нуклеации выращены алмазные сетки различной прозрачности. Успешное получение высококачественных легированных алмазных сеток дает основания считать их наиболее перспективными электродами для использования в электрохимии.

Катализаторы

Некоторые сорта наноалмазов имеют сложную структуру: наночастица состоит из алмазного ядра и графитоподобной оболочки, на поверхности которой располагается функциональный покров: кислородсожержашие (карбоксильные, гидроксильные, эфирные и другие активные группы) и азотсодержащие (аминные, амидные) группы. Для целей катализа поверхность наноалмазов модифицируют и активируют, например во фтор-содержащей низкотемпературной плазме. При среднем диаметре 4, 2 нм число поверхностных атомов составляет примерно 15%. Катализаторы на основе наноалмазов опробованы для конверсии СО в СО2. Перспетивны каталитические реакции разложения спиртов (этанола, метанола) как источника энергии. Применение электрохимического модифицирования в соляно-кислом растворе и промотирования палладием поверхности наноалмазных порошков перспективно для создания катализаторов и электродов низкотемпературных топливных элементов.

Углеродные нанотрубки

Углеродные нанотрубки (общая информация)

Одним из важнейших типов наноматериалов являются нанотрубки (нанотубулены). Самые распространенные и изученные углеродные нанотрубки были открыты в лабораториях компании NEC (Япония) при распылении графита в электрической дуге. Классическая методика получения углеродных нанотрубок.При этом с помощью электронной микроскопии были обнаружены нити с диаметром несколько нанометров, а их длина составляла от одного до нескольких микрон. Нанотрубки в 50–100 тыс. раз тоньше человеческого волоса. Нанотрубки состояли из одного или нескольких слоев, каждый из которых представлял собой гексагональную сетку графита. Концы трубок были закрыты полусферическими крышечками, составленными из шестиугольников и пятиугольников. Открытие нанотрубок вызвало большой интерес у исследователей, занимающихся созданием материалов с необычными свойствами.

Около 20 лет назад вышел в свет роман известного американского писателя-фантаста Артура Кларка «Фонтаны рая», где был описан «космический лифт» – устройство, которое связывает прочным кабелем космический корабль, находящийся на геостационарной орбите, с поверхностью Земли и помогает доставлять на орбиту грузы. Материалом фантастического подъемника служило не существовавшее до сих пор алмазоподобное волокно. В настоящее время ясно, что наиболее вероятный кандидат на роль материала для такого сверхдлинного и сверхпрочного кабеля – это бездефектные однослойные нанотрубки. «Нанокабель» от Земли до Луны из одиночной трубки можно было бы намотать на катушку размером с маковое зернышко. По своей прочности нанотрубки превосходят сталь в 50–100 раз при в шесть раз меньшей плотности. Трубки являются не только прочными, но и гибкими, напоминая по своему поведению жесткие резиновые трубки. Нить диаметром 1 мм, состоящая из нанотрубок, могла бы выдержать груз в 20 т, что в несколько сотен миллиардов раз больше ее собственной массы.

Фуллерены

Фуллерен (общая информация)

Фуллерен (англ. fullerene или buckyball) — аллотропная модификация углерода, часто называемая молекулярной формой углерода. Семейство фуллеренов включает целый ряд атомных кластеров

Cn (n > 20), представляющих собой построенные из атомов углерода замкнутые выпуклые многогранники с пяти- и шестиугольными гранями (за редкими исключениями). В незамещенных фуллеренах атомы углерода имеют координационное число 3 и находятся в sp2-гибридном состоянии, образуя сферическую сопряженную ненасыщенную систему.

Практический интерес к фуллеренам лежит в разных областях. С точки зрения электронных свойств, фуллерены и их производные в конденсированной фазе можно рассматривать как полупроводники n-типа (с шириной запрещенной зоны порядка 1, 5 эВ в случае C60). Они хорошо поглощают излучение в УФ и видимой области. При этом сферическая сопряженная -система фуллеренов обуславливает их высокие электроноакцепторные способности (сродство к электрону C60 составляет 2, 7 эВ, во многих высших фуллеренах оно превышает 3 эВ и может быть еще выше в некоторых производных). Все это обуславливает интерес к фуллеренам с точки зрения их применения в фотовольтаике, активно ведется синтез донорно-акцепторных систем на основе фуллеренов для применения в солнечных батареях (известны примеры с КПД 5, 5%), фотосенсорах и других устройствах молекулярной электроники. Также широко исследуются, в частности, биомедицинские применения фуллеренов в качестве противомикробных и противовирусных средств, агентов дляфотодинамической терапии и т.д.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-10; Просмотров: 1750; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь