Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Сети на базе технологии Wi-Fi



 

За последние 10 лет рынок мобильных устройств, таких как PDA и мобильные компьютеры, претерпел огромные изменения. Устройства, бывшие ранее в определенной степени элитными аксессуарами, сейчас являются общедоступными и обладают гораздо большими возможностями по сравнению со своими предшественниками. Портативные ноутбуки и PDA в настоящее время стали как повседневным рабочим инструментом, так и средством развлечения. С увеличением числа мобильных пользователей возникает острая необходимость в оперативном осуществлении коммуникаций между ними, в обмене данными, в быстром получении информации. Поэтому естественным образом происходит интенсивное развитие технологий беспроводных коммуникаций, рынок которых на данный момент развивается огромными темпами. Особенно это актуально в отношении беспроводных сетей. Или так называемых WLAN сетей.

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка – точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID (англ.) русск.) с помощью специальных сигнальных пакетов на скорости 0, 1 Мбит/с каждые 100 мс. Поэтому 0, 1 Мбит/с – наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала.

Прекрасным решением организации беспроводных сетей уровня LAN является технология Wi-Fi, основанная на стандарте IEЕЕ 802.11. Известны три основных редакции этого стандарта – 802.11а, 802.11b, 802.11g. Они используют разные диапазоны частот и разные виды модуляции для получения необходимого спектра:

– 802.11a – диапазон 5 ГГц, модуляция с использованием OFDM;

– 802.11b – диапазон 2, 4 ГГц, модуляция DSSS, расширение спектра методом прямой последовательности (на базе ПСП);

– 802.11g – диапазон 2, 4 ГГц, модуляция с использованием OFDM.

Устройства, основанные на этих стандартах, не конфликтуют друг с другом, однако устройства, основанные на стандартах 802.11а и 802.11g (OFDM), совместимы друг с другом, а с устройствами, основанными на стандарте 802.11b, несовместимы. Поскольку модуляция OFDM более адаптивна к беспроводной среде передачи и к условиям интерференции, то она используется чаще. Стандартом в этой технологии предусматривается использование 64 поднесущих частот.

Для устранения возможных коллизий при одновременной работе многих пользователей в стандарте 802.11 для управления предусмотрено использование протокола устранения конфликтов при множественном доступе CSMA/CA (Carrier – sense multiple – access/collision avoidance), который на основе испытательных посылок определяет состояние сети и устанавливает очередность передачи/приема.

Для доступа к магистральной сети нескольких локальных сетей (или удаленной сети) предусматривается возможность установить базовую станцию с направленными антеннами [6].

Узел общего доступа (хотспот) в офисах должен иметь соответствующий радиоблок, снабженный направленными антеннами с высоким коэффициентом усиления, для передачи сигналов на базовую станцию.

Базовая станция при этом подключается к высокоскоростной проводной магистрали. Хотспот подключается к внешнему, установленному, например, на крыше здания, радиоблоку кабельным соединением по технологии Ethernet.

Для расширения зоны покрытия от уровня LAN до уровня MAN стандартом 802.11s предусмотрена возможность создания ячеистой структуры сети (Mesh-network). В такой сети каждый узел доступа по радиоканалу может быть соединен с другими подобными узлами, образуя ячеистую (сеточную) структуру сети. Используемые протоколы взаимных соединений контролируют состояние соединения и поддерживают заданное качество передачи.

 

 

Рисунок 11 – Вариант построения сети Wi-Fi

Стек протоколов IEEE 802.11

 

Естественно, стек протоколов стандарта IEEE 802.11 соответствует общей структуре стандартов комитета 802, то есть состоит из физического уровня и канального уровня с подуровнями управления доступом к среде MAC и логической передачи данных LLC. Как и у всех технологий семейства 802, технология 802.11 определяется двумя нижними уровнями, то есть физическим уровнем и уровнем MAC, а уровень LLC выполняет свои стандартные общие для всех технологий LAN функции, изображено на рисунке12.

 

 

Рисунок 12 – Стек протоколов IEEE 802.11

 

На физическом уровне существует несколько вариантов спецификаций, которые отличаются используемым частотным диапазоном, методом кодирования и как следствие – скоростью передачи данных. Все варианты физического уровня работают с одним и тем же алгоритмом уровня MAC, но некоторые временные параметры уровня MAC зависят от используемого физического уровня. Уровень доступа к среде стандарта 802.11.В сетях 802.11 уровень MAC обеспечивает два режима доступа к разделяемой среде:

– распределенный режим DCF (Distributed Coordination Function);

– централизованный режим PCF (Point Coordination Function).

Рассмотрим сначала, как обеспечивается доступ в распределенном режиме DCF. В этом режиме реализуется метод множественного доступа с контролем несущей и предотвращением коллизий. Вместо неэффективного в беспроводных сетях прямого распознавания коллизий по методу CSMA/CD здесь используется их косвенное выявление. Для этого каждый переданный кадр должен подтверждаться кадром положительной квитанции, посылаемым станцией назначения. Если же по истечении оговоренного тайм-аута квитанция не поступает, станция-отправитель считает, что произошла коллизия.

Режим доступа DCF требует синхронизации станций. В спецификации 802.11 эта проблема решается достаточно элегантно-временные интервалы начинают отсчитываться от момента окончания передачи очередного кадра. Это не требует передачи каких-либо специальных синхронизирующих сигналов и не ограничивает размер пакета размером слота, так как слоты принимаются во внимание только при принятии решения о начале передачи кадра.

Станция, которая хочет передать кадр, обязана предварительно прослушать среду. Стандарт IEEE 802.11 предусматривает два механизма контроля активности в канале (обнаружения несущей) физический и виртуальный. Первый механизм реализован на физическом уровне и сводится к определению уровня сигнала в антенне и сравнению его с пороговой величиной. Виртуальный механизм обнаружения несущей основан на том, что в передаваемых кадрах данных, а также в управляющих кадрах АСК и RTS/CTS содержится информация о времени, необходимом для передачи пакета (или группы пакетов) и получения подтверждения. Все устройства сети получают информацию о текущей передаче и могут определить, сколько времени канал будет занят, устройство при установлении связи сообщает всем, на какое время оно резервирует канал. Как только станция фиксирует окончание передачи кадра, она обязана отсчитать интервал времени, равный межкадровому интервалу (IFS). Кадр можно передавать только в начале какого-либо из слотов при условии, что среда свободна. Станция выбирает для передачи слот на основании усеченного экспоненциального двоичного алгоритма отсрочки, аналогичного используемому в методе CSMA/CD. На рисунке 13 изображена схема приема кадров Wi-Fi.

 

 

Рисунок 13 – Схема приема кадров Wi-Fi

 

Размер слота зависит от способа кодирования сигнала; так, для метода FHSS размер слота равен 28 мкс, а для метода DSSS – 1 мкс. Размер слота выбирается таким образом, чтобы он превосходил время распространения сигнала между любыми двумя станциями сети плюс время, затрачиваемое станцией на распознавание занятости среды. Если такое условие соблюдается, то каждая станция сети сумеет правильно распознать начало передачи кадра при прослушивании слотов, предшествующих выбранному ею для передачи слоту. Это, в свою очередь, означает следующее.

Коллизия может иметь место только в том случае, когда несколько станций выбирают один и тот же слот для передачи.

В этом случае кадры искажаются, и квитанции от станций назначения не приходят. Не получив в течение определенного времени квитанцию, отправители фиксируют факт коллизии и пытаются передать свои кадры снова. При каждой повторной неудачной попытке передачи кадра интервал [0, CW], из которого выбирается номер слота, удваивается. Если, например, начальный размер окна выбран равным 8 (то есть CW = 7), то после первой коллизии размер окна должен быть равен 16 (CW = 15), после второй последовательной коллизии – 32 и т. д. Начальное значение CW, в соответствии со стандартом 802.11, должно выбираться в зависимости от типа физического уровня, используемого в беспроводной локальной сети [7].

Как и в методе CSMA/CD, в данном методе количество неудачных попыток передачи одного кадра ограничено, но стандарт 802.11 не дает точного значения этого верхнего предела. Когда верхний предел в N попыток достигнут, кадр отбрасывается, а счетчик последовательных коллизий устанавливается в ноль. Этот счетчик также устанавливается в ноль, если кадр после некоторого количества неудачных попыток все же передается успешно.

В беспроводных сетях возможна ситуация, когда два устройства (А и В) удалены и не слышат друг друга, однако оба попадают в зону охвата третьего устройства С – так называемая проблема скрытого терминала. Если оба устройства А и В начнут передачу, то они принципиально не смогут обнаружить конфликтную ситуацию и определить, почему пакеты не проходят.

В режиме доступа DCF применяются меры для устранения эффекта скрытого терминала. Для этого станция, которая хочет захватить среду и в соответствии с описанным алгоритмом начинает передачу кадра в определенном слоте, вместо кадра данных сначала посылает станции назначения короткий служебный кадр RTS (Request To Send – запрос на передачу). На этот запрос станция назначения должна ответить служебным кадром CTS (Clear To Send – свободна для передачи), после чего станция–отправитель посылает кадр данных. Кадр CTS должен оповестить о захвате среды те станции, которые находятся вне зоны сигнала станции-отправителя, но в зоне досягаемости станции-получателя, то есть являются скрытыми терминалами для станции-отправителя.

Максимальная длина кадра данных 802.11 равна 2346 байт, длина RTS кадра – 20 байт, CTS-кадра – 14 байт. Так как RTS- и CTS-кадры гораздо короче, чем кадр данных, потери данных в результате коллизии RTS- или CTS кадров гораздо меньше, чем при коллизии кадров данных. Процедура обмена RTS- и CTS-кадрами не обязательна. От нее можно отказаться при небольшой нагрузке сети, поскольку в такой ситуации коллизии случаются редко, а значит, не стоит тратить дополнительное время на выполнение процедуры обмена RTS- и CTS-кадрами.

При помехах иногда случается, что теряются большие фреймы данных, поэтому можно уменьшить длину этих фреймов путем фрагментации. Фрагментация фрейма – это выполняемая на уровне MAC функция, назначение которой – повысить надежность передачи фреймов через беспроводную среду. Под фрагментацией понимается дробление фрейма на меньшие фрагменты и передача каждого из них отдельно.

Предполагается, что вероятность успешной передачи меньшего фрагмента через зашумленную беспроводную среду выше. Получение каждого фрагмента фрейма подтверждается отдельно; следовательно, если какой-нибудь фрагмент фрейма будет передан с ошибкой или вступит в коллизию, передавать повторно придется только его, а не весь фрейм. Это увеличивает пропускную способность среды. На рисунке 14 изображена структура цикла кадра Wi-Fi.

 

 

Рисунок 14 – Структура цикла кадра Wi-Fi

 

Размер фрагмента может задавать администратор сети. Фрагментации подвергаются только одноадресные фреймы. Широковещательные, или многоадресные, фреймы передаются целиком. Кроме того, фрагменты фрейма передаются пакетом, с использованием только одной итерации механизма доступа к среде DCF.

Хотя за счет фрагментации можно повысить надежность передачи фреймов в беспроводных локальных сетях, она приводит к увеличению «накладных расходов» МАС-протокола стандарта 802.11. Каждый фрагмент фрейма включает информацию, содержащуюся в заголовке 802.11 MAC, а также требует передачи соответствующего фрейма подтверждения. Это увеличивает число служебных сигналов МАС-протокола и снижает реальную производительность беспроводной станции. Фрагментация – это баланс между надежностью и непроизводительной загрузкой среды. В режиме доступа DCF применяются меры для устранения эффекта скрытого терминала. Для этого станция, которая хочет захватить среду и в соответствии с описанным алгоритмом начинает передачу кадра в определенном слоте, вместо кадра данных сначала посылает станции назначения короткий служебный кадр RTS (Request To Send – запрос на передачу). На этот запрос станция назначения должна ответить служебным кадром CTS (Clear To Send – свободна для передачи), после чего станция-отправитель посылает кадр данных. Кадр CTS должен оповестить о захвате среды те станции, которые находятся вне зоны сигнала станции-отправителя, но в зоне досягаемости станции-получателя, то есть являются скрытыми терминалами для станции-отправителя.

Максимальная длина кадра данных 802.11 равна 2346 байт, длина RTS-кадра – 20 байт, CTS-кадра – 14 байт. Так как RTS- и CTS-кадры гораздо короче, чем кадр данных, потери данных в результате коллизии RTS- или CTS-кадров гораздо меньше, чем при коллизии кадров данных. Процедура обмена RTS- и CTS-кадрами не обязательна. От нее можно отказаться при небольшой нагрузке сети, поскольку в такой ситуации коллизии случаются редко тратить дополнительное время на выполнение процедуры обмена RTS- и CTS-кадрами. Как и в методе CSMA/CD, в данном методе количество неудачных попыток передачи одного кадра ограничено, но стандарт 802.11 не дает точного значения этого верхнего предела. Когда верхний предел в N попыток достигнут, кадр отбрасывается, а счетчик последовательных коллизий устанавливается в ноль. Этот счетчик также устанавливается в ноль, если кадр после некоторого количества неудачных попыток все же передается успешно.

В беспроводных сетях возможна ситуация, когда два устройства (А и В) удалены и не слышат друг друга, однако оба попадают в зону охвата третьего устройства С – так называемая проблема скрытого терминала. Если оба устройства А и В начнут передачу, то они принципиально не смогут обнаружить конфликтную ситуацию и определить, почему пакеты не проходят. Станция, которая хочет передать кадр, обязана предварительно прослушать среду. Стандарт IEEE 802.11 предусматривает два механизма контроля активности в канале (обнаружения несущей): физический и виртуальный. Первый механизм реализован на физическом уровне и сводится к определению уровня сигнала в антенне и сравнению его с пороговой величиной. Виртуальный механизм обнаружения несущей основан на том, что в передаваемых кадрах данных, а также в управляющих кадрах АСК и RTS/CTS содержится информация о времени, необходимом для передачи пакета (или группы пакетов) и получения подтверждения. Все устройства сети получают информацию о текущей передаче и могут определить, сколько времени канал будет занят, устройство при установлении связи сообщает всем, на какое время оно резервирует канал.

 

 

4 РАЗРАБОТКА СТРУКТУРЫ ЛОКАЛЬНОЙ СЕТИ НА БАЗЕ
ТЕХНОЛОГИЙ Wi-Fi И Ethernet


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-10; Просмотров: 810; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь