Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


История развития генетики как фундаментальной науки



История развития генетики как фундаментальной науки

Общее представление о генетике как науке

Генетика человека – наука о наследственности и изменчивости человека.

Наследственность – это способность живых организмов сохранять и передавать из поколения в поколение признаки и свойства организма.

Изменчивость – это способность живых организмов в процессе онтогенеза утрачивать старые и приобретать новые признаки и свойства.

Основные этапы развития генетики человека

1900 г. – начало бурного развития генетики как науки – вторичное открытие законов Менделя тремя учеными независимо друг от друга: де Фриз (Голландия), Корренс (Австрия), Чермак (Германия).

Г. Мендель открыл закономерности наследования признаков в 1865 г. и опубликовал на немецком языке в трудах общества естествоиспытателей по названием «Опыты над растительными гибридами».

1900 – 1930 гг. – классический период развития генетики (этап менделизма и хромосомной теории наследственности).

1930 – 1940 гг. – период индуцированного мутагенеза (получение мутаций с помощью радиации и химических веществ).

1940-1953 – 2000 гг. – период молекулярной генетики (изучение структуры и функциональной природы молекул ДНК).

1953 г. – Уотсон и Крик расшифровали структуру молекулы ДНК.

2000 г. – полностью расшифрован генетический код человека – он полностью может быть записан с помощью химических формул.

после 2000 г. – современный этап – основное направление – структурно-системное познание глубинной сущности гена.

 

Методы исследования генетики человека

Генеалогический метод (метод родословных)

Предложен Гальтоном в 1865 г. Задачи метода:

– установления наследственного характера болезни;

– определения типа ее наследования;

– изучение сцепления болезни с различными генетическими маркерами.

Методика составления родословной

1. Сбор родословной начинается с пробанда – больного ребенка (человека). Если это взрослый сразу собирают информацию о его детях, затем братьях и сестрах (сибсах) с учетом последовательности беременностей у матери и их сходах.

2. Сбор сведений обо всех кровных родственниках по материнской линии.

3. Сбор сведений обо всех кровных родственниках по отцовской линии.

К родословной предлагается легенда.

Каждое поколение изображается на одной линии и обозначается римскими цифрами сверху вниз.

Символы, используемые при составлении родословной (предложены Юстом в 1931 г.)

 

Цитогенетический метод

Проводится при подозрении не хромосомную болезнь. Задачи:

– идентифицировать перестроенную хромосому;

– установить тип хромосомной перестройки.

препараты хромосом человека можно приготовить из фибробласток кожи, костного мозга, но наиболее доступной при таких исследованиях является культура лимфоцитов периферической крови (кровь помещают в специальную среду с веществами стимулирующими рост и клеточное деление, затем добавляют колхицин, что приводит к остановке митоза на стадии метафазы, в которой хромосомы мах спирализированы).

Биохимический метод

применяют при подозрении на врожденные дефекты обмена. Применяют их в 2 этапа:

– скринирующие экспресс-методы, позволяющие обследовать большие группы населения (например, микробиологический тест Гатри (как вариант тест Фелинга) для обследования всех новорожденных на фенилкетонурию;

– более сложные методы биохимии и молекулярной биологии – методы фракционирования и количественного анализа, жидкостной и газовой хромотографии.

 

Близнецовый метод

Предложен Гальтоном в 1876 г. Задачи метода:

– установить роль наследственности и среды в фенотипическом разнообразии различных признаков у человека.

Этапы реализации метода:

1. Сбор близнецового материала и диагностика зиготности (метод «сходства-подобия», по эритроцитарным и лейкоцитарным маркерам, ДНК- диагностика).

 

2. Анализ близнецовых данных.

Установление коэффициента парной конкордантности, который указывает на относительное число пар, в которых оба партнера несут изучаемый признак. Вычисляется отдельно для МЗ и ДЗ близнецов.

К= С/ С+Д

С – число конкордантных пар (сходных);

Д – число дисконкордантных пар (различающихся).

К выражается либо в долях еденицы, либо в процентах

Далее вычисляют долю наследственной обусловленности признака – наследуемость (Н), которая также выражается в процентах или долях еденицы.

Н= К МЗ– К ДЗ / 1 (или 100 если в %) – К ДЗ

К МЗ и К ДЗ – коэффициенты парной конкордантности МЗ и ДЗ близнецов.

1– 0, 7 – признак (болезнь) детерменируется генетическими факторами

0, 4 – 0, 7 – болезнь с наследственной предрасположенностью, реализующаяся под влиянием средовых факторов.

0 – 0, 4 – болезнь, возникшая под влиянием окружающей среды.

 

+1Популяционный метод
Методы генетики популяций широко применяют в исследованиях человека. Внутрисемейный анализ заболеваемости неотJ; елим от изучения наследственной патологии как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составл; яет:: rредмет популяционно-генетическоro исследования. Это дает лнформацию о степени гетерозиroтности и полиморфизма челозеческих популяций, выявляет различия частот аллелей между; JaЗНЫМИ популяциями.
Считают, что закон Харди - Вайнберга свидетельствует о том, : по наследование как таковое не меняет частоты аллелей в: юпуляции. Этот закон вполне приroден для анализа крупньiх" :: rопуляций, где идет свободное скрещивание. Сумма аллелей -J; Нoгo гена, согласно формуле Харди --'- Вайнберга р + q = 1, в: енофонде популяции является величиной постоянной. Сумма: еноти: пов аллелей данного гена р2 + 2pq + q2 = 1 также величина -остоянная. При полном доминировании установив в данной =опуляции число рецессивных roмозигот (q2 - число roмозиroТНЫХ хобей по рецессивному гену с генотипом аа), достаточно извлечь
адратный корень из полученной величины, и мы найдем частоту: ецессивного аллеля а. Частота доминантного аллеля А составит - = 1 - q. Вычислив таким образом ча" стоты аллелей а и А, можно:: npеделить частоты соответствующих генотипов в популяции (р2 = = АА; 2pq = Аа). Например, по данным ряда ученых, частота альбинизма (наследуется как аутосомный рецессивный признак) составляет 1: 20 000 (i). СлеJ)овательно, частота аллеля а в генофонде будет q = v' V20 000 = /141 и тогда частота аллеля А
. 1 140
будет р = 1 - q. р = 1 - /141 = /141. В этом случае частота
геtе80ЗИГОТНЫХ носителей гена альбинизма (2pq) составит 2(14 /141)' (1/141) = 1/70, или 1, 4%.
Статистический анализ распространения отдельных наследст-
. венных признаков (генов) в популяциях людей в разных странах позволяет определить адаптивную ценность конкретных генотипов. Однажды возникнув, мутации могут передаваться потомству на протяжении многих поколениЙ. Это приводит к полиморфизму (генетической неоднородности) человеческих популяций. Среди населения Земли практически невозможно (за исключением однояйцевых близнецов) найти генетически одинаковых людей. В гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей (генетический груз) •. обусловливающих развитие различных наследственных заболеваний. Частота их возникновения зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков.

Строение и функции белка

Белки играют важнейшую роль в жизнедеятельности любых организмов. Многообразие и сложность живой материи, по сути дела, отражают многообразие и сложность самих белков. Каждый белок имеет свою уникальную функцию, которая определяется присущими ему структурой и химическими свойствами. Некоторые белки являются ферментами, т.е. катализаторами биохимических реакций в живых организмах. Каждая химическая реакция катализируется определенным ферментом. Без участия ферментов подобные реакции не происходят вовсе, или протекают крайне медленно, что бы обеспечить саму возможность существования живых организмов. Другие белки – структурные – выполняют в организме роль строительных белков – или сами по себе (например, коллаген), или в комплексе с нуклеиновыми кислотами (нуклеопротеины), углеводами (гликопротеины) или липидами (липопротеины). Некоторые белки, вовлеченные в систему запаса и транспорта кислорода, связываются с функционально важными металлосодержащими органическими молекулами. Так, например, миоглобин и гемоглобин специфически связывают железосодержащую группировку, называемую гемом.

Белки – это большие полимерные молекулы, построенные из мономерных аминокислотных звеньев. В состав белков входят двадцать различных видов аминокислот. Все белковые аминокислоты (за исключением пролина) характеризуются общей структурой (рис. 1), обязательными элементами которой являются: аминогруппа, карбоксильная группа, водород и какой-либо радикал.

 

Рис. 1 Структурная формула аминокислот. NH2 – аминогруппа; COOH – карбоксильная группа; (H – атом водорода); радикал R – боковая группа.

 

Аминокислоты в белках связаны между собой прочными ковалентными пептидными связями, возникающими между карбоксильной группой одной аминокислоты и аминогруппой следующей кислоты. Образующийся в результате такого взаимодействия олигомер называют пептидом.Аминокислоты, входящие в состав пептида часто называют аминокислотными остатками (табл.1). Структурную основу любого пептида составляет зигзагообразный остов, образованный атомами углерода и азота.

Таблица 1

Классификация аминокислот по природе боковых групп

Природа боковой группы Название аминокислоты Сокращение
Нейтральные глицин гли
Неполярные ароматические триптофан три
фенилаланин фен
тирозин тир
Неполярные серосодержащие метионин мет
цистеин цис
Неполярные алифатические аланин ала
лейцин лей
валин вал
изолейцин иле
пролин про
Полярные, содержащие ОН-группу серин сер
треонин тре
Полярные амиды аспарагин асн
глутамин глн
Полярные «–» заряженные аспарагиновая кислота асп
глутаминовая кислота глу
Полярные «+» заряженные гистидин гис
лизин лиз
аргинин арг

 

Состав нуклеиновых кислот

 

Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:

· азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.

· моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

· остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота.

 

Состав ДНК

 

Исследуя нуклеотидный состав нативных ДНК различного происхождения, Чаргафф обнаружил следующие закономерности.

1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований. Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый.

2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как А=Т и G=C. Из этих закономерностей вытекает третья.

3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового (цитозин и аденин), равно количеству оснований, содержащих оксо-группу в тех же положениях (гуанин и тимин), т. е. A+C=G+T. Эти закономерности получили название правил Чаргаффа. Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что (G+C)/(A+T), как правило, отличается от единицы (может быть как больше, так и меньше ее). По этому признаку различают два основных типа ДНК: А Т-тип с преимущественным содержанием аденина и тимина и G C-тип с преимущественным содержанием гуанина и цитозина.

Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденина и тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности. Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0, 3 до 2, 8. При подсчете коэффициента специфичности учитывается содержание минорных Оснований, а также замены основных оснований их производными. Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6% 5-метилцитозина, Последний входит в сумму содержания гуанина (22, 7%) и цитозина (16, 8%). Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры.

 

 

Состав РНК

 

Первые сведения о нуклеотидном составе РНК относились к препаратам, представляющим собой смеси клеточных РНК (рибосомных, информационных и транспортных) и называемым обычно суммарной фракцией РНК. Правила Чаргаффа в этом случае не соблюдаются, хотя определенное соответствие между содержанием гуанина и цитозина, а также аденина и урацила все же имеет, место.

Данные, полученные в последние годы при анализе индивидуальных РНК, показывают, что и на них правила Чаргаффа не распространяются. Однако различия в содержании аденина и урацила, а также гуанина и цитозина для большинства РНК невелики и что, следовательно, тенденция к выполнению указанных правил все же наблюдается. Этот факт объясняется особенностями макроструктуры РНК.

Характерными структурными элементами некоторых РНК являются минорные основания. Соответствующие им нуклеотидные остатки обычно входят в состав транспортных и некоторых других РНК в очень небольших количествах, поэтому определение полного нуклеотидного состава таких РНК представляет собой иногда весьма сложную задачу.

 

 

Главная > Цитология > Сравнительная характеристика ДНК и РНК (таблица)

Сравнительная характеристика ДНК и РНК (таблица)

Признаки ДНК РНК
Местонахождение в клетке Ядро, митохондрии, хлоропласты Ядро, рибосомы, цитоплазмы, митохондрии, хролопласты
Местонахождение в ядре Хромосомы Ядрышко
Строение макромолекулы Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью Одинарная полинуклеотидная цепочка
Мономеры Дезоксирибонуклеотиды Рибонуклеотиды
Состав нуклеотид а Азонистое основание (пуриновое-аденин, гуанин, пиримидиновое – тимин, цитозин); дезоксирибоза (углевод); остаток фосфорнойкислоты Азонистое основание (пуриновое-аденин, гуанин, пиримидиновое-урацил, цитозин); рибоза (углевод); остаток фосфорнойкислоты
Типы нуклеидов Адениловый (А), гуаниловый(Г), тимидиловый (Т), цитидиловый (Ц) Адениловый (А), гуаниловый (Г), уридиловый (Т), цитидиловый (Ц)
Свойства Способная к самоудвоению по принципу комплементарности А=Т, Т=А, Г=Ц, Ц=Г Стабильна. Не способна к самоудвоению. Лабильна.
Функции Химическая основа хромосомного генетического материала (гена); синтез ДНК, синтез РНК, информация о структуре белков. Информационная (иРНК) – передает код наследственной информации о первичной структуре белковой молекулы, рибосомальная (рРНК) – входит в состав рибосом; транспортная (тРНК) – переносит аминокислоты к рибосомам; митохондриальная и платидная РНК – входят в состав рибосом этих органелл

 

Генетический код - исторически сложившаяся организация молекул ДНК и РНК, при которой последовательность нуклеотидов в них несет информацию о последовательности аминокислот в белковых молекулах. Свойства кода: триплетность (кодон), неперекрываемость (кодоны следуют друг за другом), специфичность (один кодон может определять в полииептидной цепи только одну аминокислоту), универсальность (у всех живых организмов один и тот же кодон обусловливает включение в полипептид одну и ту же аминокислоту), избыточность (для большинства аминокислот существует несколько кодонов). Триплеты, не несущие информации об аминокислотах, являются стоп триплетами, обозначающими место начала синтеза и-РНК. (В.Б. Захаров. Биология. Справочные материалы. М., 1997)

 

Поскольку ДНК является молекулой наследственности, то для реализации этого качества она должна точно копировать саму себя и таким образом сохранять всю имеющуюся в исходной молекуле ДНК информацию в виде определенной последовательности нуклеотидов. Это обеспечивается за счет особого процесса, предшествующего делению любой клетки ррганизма, который называется репликацией ДНК.

Суть репликации днк заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5'- к З'-концу (лидирующая цепь), помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З'-концу вновь синтезируемой цепи ДНК. На второй нити ДНК (отстающая нить) новая ДНК образуется в виде небольших сегментов, состоящих из 1000—2000 нуклеотидов (фрагменты Оказаки).

Рис. 3.5. Репликация ДНК. А. Вилка репликации. Новая нить ДНК синтезируется только в направлении от 5'- к З'-концу. Каждая из двух нитей ДНК служит матрицей для синтеза новой нити. Так как родительские нити антипараллельны, то непрерывная репликация ДНК происходит в направлении 5' -> 3' только на одной нити, которая называется ведущей (лидирующей). Б. Синтез новой цепи на отстающей нити требует постоянного образования новых затравок для начала репликации и осуществляется небольшими сегментами по 1000—2000 нуклеотидов в каждом (фрагменты Оказаки). Заправки представляют собой короткие последовательности РНК, которые синтезируются при участии РНК-полимеразы (праймазы). Затравки деградируют после завершения синтеза следующего фрагмента Оказаки. Образованные соседние фрагменты ДНК соединяются ДНК-лигазой. В. Показано, как происходит движение репликативной вилки. Топоизоме-раза удаляет супервитки спирали, хеликаза обеспечивает раскручивание двойной спирали, белок SSB обеспечивает стабильность одноцепочечной ДНК

Для начала репликации днк фрагментов этой нити требуется синтез коротких фрагментов РНК (о характерных особенностях РНК будет сказано ниже) как затравок, для чего используется особый фермент — РНК-полимераза (праймаза). Впоследствии праймеры РНК удаляются, в образовавшиеся бреши встраивается ДНК с помощью ДНК полимеразы I. Таким образом, каждая цепь ДНК используется как матрица или шаблон для построения комплементарной цепи и репликация ДНК является полуконсервативной (т.е. одна нить в новой молекуле ДНК — «старая», а вторая — новая). Для репликации лидирующей и отстающей цепей клеткой используют разные ферменты. В результате репликации образуются две новые абсолютно идентичные молекулы ДНК, идентичные также исходной молекуле ДНК до начала ее редупликации (более подробно процесс репликации ДНК показан на рис. 3.5). ДНК-полимераза, как и любой другой фермент, существенно ускоряет процесс присоединения комплементарных нуклеотидов к свободной цепи ДНК, однако химическое сродство аденина к тимину, а цитозина к гуанину столь велико, что они соединяются друг с другом и в отсутствие ДНК-полимеразы в простой реакционной смеси1.

Можно сказать, несколько упрощая, что феномен точного удвоения молекулы ДНК, в основе которого лежит компле-ментарность оснований этой молекулы, составляет молекулярную основу наследственности.

Скорость репликации ДНК у человека относительно низкая и для того, чтобы обеспечить репликацию ДНК любой хромосомы человека, требовались бы недели, если бы репликация начиналась из одной точки.

На самом деле в молекуле ДНК любой хромосомы, а-каждая хромосома человека содержит только одну молекулу ДНК, имеется множество мест инициации репликации (репликонов). От каждого репликона репликация идет в обоих направлениях до тех пор, пока соседние репликоны не сливаются. Поэтому репликация ДНК в каждой хромосоме протекает относительно быстро.

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется геном. Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.

Транскрипция (переписывание) информации происходит путем синтеза на одной из цепей молекулы ДНК одноцепочной молекулы РНК, последовательность нуклеотидов которой точно соответствует последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК.

Она (и - РНК) является посредником, передающим информацию от ДНК к месту сборки молекул белка в рибосоме. Синтез и - РНК (транскрипция) происходит следующим образом. Фермент (РНК - полимераза) расщепляет двойную цепочку ДНК, и на одной из ее цепей (кодирующей) по принципу комплементарности выстраиваются нуклеотиды РНК. Синтезированная таким образом (матричный синтез) молекула и - РНК выходит в цитоплазму, и на один ее конец нанизываются малые субъединицы рибосом.

Второй этап в биосинтезе белка — трансляция — это перевод последовательности нуклеотидов в молекуле и - РНК в последовательность аминокислот в полипептиде. У прокариот, не имеющих оформленного ядра, рибосомы могут связываться с вновь синтезированной молекулой и - РНК сразу же после ее отделения от ДНК или даже до полного завершения ее синтеза. У эукариот и - РНК сначала должна быть доставлена через ядерную оболочку в цитоплазму. Перенос осуществляется специальными белками, которые образуют комплекс с молекулой и - РНК. Кроме функций переноса эти белки защищают и - РНК от повреждающего действия цитоплазматических ферментов.

В цитоплазме на один из концов и - РНК (а именно на тот, с которого начинается синтез молекулы в ядре) вступает рибосома и начинается синтез полипептида. По мере продвижения по молекуле РНК рибосома транслирует триплет за триплетом, последовательно присоединяя аминокислоты к растущему концу полипептидной цепи. Точное соответствие аминокислоты коду триплета и - РНК обеспечивается т - РНК.

Транспортные РНК (т - РНК) «приносят» аминокислоты в большую субъединицу рибосомы. Молекула т - РНК имеет сложную конфигурацию. На некоторых участках ее между комплементарными нуклеотидами образуются водородные связи, и молекула по форме напоминает лист клевера. На ее верхушке расположен триплет свободных нуклеотидов (антикодон), который соответствует определенной аминокислоте, а основание служит местом прикрепления этой аминокислоты (рис. 1).

 

Рис. 1. Схема строения транспортной РНК: 1 — водородные связи; 2 — антикодон; 3 —место прикрепления аминокислоты.

Каждая т - РНК может переносить только свою аминокислоту. Т-РНК активируется специальными ферментами, присоединяет свою аминокислоту и транспортирует ее в рибосому. Внутри рибосомы в каждый данный момент находится всего два кодона и-РНК. Если антикодон т-РНК является комплементарным кодону и-РНК, то происходит временное присоединение т-РНК с аминокислотой к и-РНК. Ко второму кодону присоединяется вторая т-РНК, несущая свою аминокислоту. Аминокислоты располагаются рядом в большой субъединице рибосомы, и с помощью ферментов между ними устанавливается пептидная связь. Одновременно разрушается связь между первой аминокислотой и ее т-РНК, и т-РНК уходит из рибосомы за следующей аминокислотой. Рибосома перемещается на один триплет, и процесс повторяется. Так постепенно наращивается молекула полипептида, в которой аминокислоты располагаются в строгом соответствии с порядком кодирующих их триплетов (матричный синтез) (рис. 2).

 

Одна рибосома способна синтезировать полную полипептидную цепь. Однако, нередко по одной молекуле и-РНК движется несколько рибосом. Такие комплексы называются полирибосомами. После завершения синтеза полипептидная цепочка отделяется от матрицы – молекулы и-РНК, сворачивается в спираль и приобретает свойственную ей (вторичную, третичную или четвертичную) структуру. Рибосомы работают очень эффективно: в течение 1с бактериальная рибосома образует полипептидную цепь из 20 аминокислот.

Организация генов

  • Статью опубликовал xflamex в категории ДНК

Хромосома состоит из одной единственной молекулы ДНК, содержащей множество генов. Гаплоидный набор хромосом человека содержит 3, 5x10° нуклеотидных пар, этого достаточно для кодирования 1, 5 млн. пар генов. Однако данные по изучению генома человека показывают, что организм человека имеет не более 100 тысяч белков. Это значит, что в клетках человека только 1% ДНК кодирует образование белков. В отношении остальных 99% существуют разные гипотезы. Некоторая часть не транслируемых последовательностей ДНК регулирует экспрессию генов в ходе развития, дифференцировки и адаптации. Другая часть избыточной ДНК входит в состав нитронов, некодирующих участков генов, разделяющих кодирующие области И все же большая часть избыточной ДНК представлена многочисленными семействами повторяющихся последовательностей. ДНК пммп уукариот можно разделить на два класса ИШЦИПДШискО: уникальные (иегсовторяюш и оси) I повторяющиеся (повторы) последователь мости ДНК. К первому относятся однокопийные гены, кодирующие белки. Класс повторяющихся последовательностей ДНК представлен повторами, которые встречаются у человека от 2 до 107.

У человека выделяют структурные гены, функционирование которых тесно связано со специфическими последовательностями в молекуле ДНК, называемые регуляторными участками.

Структурные гены подразделяют на независимые гены, повторяющиеся гены, кластеры, прерывистые гены:
- независимые гены — транскрибируются независимо, их транскрипция не связана с другими генами. Однако их активность может регулироваться, например, гормонами;
- повторяющиеся гены — в хромосомах один ген может находиться в виде повторов, повторяясь много сотен раз, вплотную следуя друг за другом, образуя тандемы. Пример, гены рРНК;
- кластеры генов — группы различных генов, находящиеся в определенных участках или локусах хромосом, объединенных общими функциями. В геноме человека, например, кластеры гистоновых генов повторяются до 10—20 раз, образуя тандемные группы повторов. Между генами, объединенными в кластере общими функциями, находятся спейсерные участки. Спейсерная ДНК не всегда транскрибируется. Иногда эти участки несут информацию о регуляции или инициации транскрипции, но в основном это просто короткие повторы избыточной ДНК, роль которой не выяснена.

 

Кариотип человека

Кариотип человека (от греч. - орех, ядро и - отпечаток, тип) — диплоидный хромосомный набор человека, представляющий собой совокупность морфологически обособленных хромосом, внесённых родителями при оплодотворении.

Хромосомы набора генетически неравноценны: каждая хромосома содержит группу разных генов. Все хромосомы в кариотипе человека делятся на аутосомы и половые хромосомы. В кариотипе человека 44 аутосомы (двойной набор) - 22 пары гомологичных хромосом и одна пара половых хромосом — XX у женщин и ХУ у мужчин. По форме и размерам все аутосомы-гомологи делятся на 7 групп, обозначаемых латинскими буквами от А до G.

Кроме того, все гомологи в порядке уменьшения общей длины нумеруются от 1 до 22, а по положению центромеры (первичной перетяжки) все хромосомы в кариотипе человека делятся на метацентрические (расположение центромеры в середине длины хромосомы), субметацентрические (ближе к одному концу), акроцентрические (на теломерном конце). В группу А входят 3 пары наиболее крупных метацентрических хромосом (1-3).


В группу В (4-5) включены 2 пары субметацентрических хромосом. Группа С (6-12) объединяет 7 пар аутосом среднего размера с суб- медианно расположенной центромерой. Кроме того, половая хромосома X неотличима от аутосом этой группы и при раскладке стандартно окрашенных хромосом включается в состав группы С (6-Х-12). В группе D (13-15) - 3 пары акроцентрических хромосом среднего размера. В группе Е (16- 18) - одна пара хромосом (16) с медианной локализацией центромеры, пары 17-18 отличаются меньшей общей длиной и размерами коротких плеч. В последних двух группах находятся самые мелкие хромосомы: метацентри- ческие - группа F (19-20) и акроцентрические — группа G (21—22).

Половая хромосома Y-акроцентрик, подобный хромосомам 21 и 22, но практически всегда может быть дифференцирована. Хромосомы кариотипа человека определяются с помощью различных методов дифференциального окрашивания.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1—1, 5 ч, G2-периода интерфазы — 2—3 ч, S-периода интерфазы — 6—10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).

Мейоз.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 1314; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.07 с.)
Главная | Случайная страница | Обратная связь