Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация мутаций на хромосомном уровне



Ядерные изменения, как правило, делят на 3 основных типа (таблица 1)

4.1. Изменения числа хромосом (геномные мутации). В результате образуются организмы с отличным от нормального типа количеством хромосом. Эти явления играют большую роль в эволюции растений и широко используются селекционерами для выведения новых сортов и видов растений.

Анеуплоидия. В нормальном хромосомном наборе либо отсутствует одна или более хромосом, либо присутствует одна или более добавочных хромосом.

· Нуллисомик – организм, содержащий на одну пару хромосом меньше нормы, общее число хромосом 2n–2;

· Моносомик – организм, содержащий на одну хромосому меньше нормы, общее число хромосом 2n–1;

· Трисомик – в хромосомном наборе присутствует одна лишняя хромосома, общее число хромосом 2n+1;

· Тэтрасомик – в хромосомном наборе присутствует две лишние хромосомы, общее число хромосом 2n+2;

Моноплоидия. Число наборов негомологичных хромосом отличается от двух. Большинство эукариотических организмов диплоидны (2n), т.е. несут по два набора негомологичных хромосом в соматической клетке и одному (n) – в гаметах. Моноплоидные организмы содержат по одному набору хромосом (n). Заметим, что для некоторых организмов такое положение является нормой (например, самцы пчел);

Полиплоидия. Полиплоидные организмы имеют более двух наборов негомологичных хромосом (триплоиды – организм имеет три набора хромосом (3n), тетраплоид – четыре (4n) и т.д.). Наиболее распространены полиплоидные организмы, у которых число хромосомных наборов в клетке кратно двум: (4 – тетраплоиды, 6 – гексаплоиды, 8 – октоплоиды).

Таблица 1

Классификация мутаций на хромосомном уровне

 

Изменения числа хромосом (геномные мутации) Изменения числа и порядка расположения генов (структурные мутации, аберрации) Изменения индивидуальных генов (генные, собственно мутации)
Моноплоидия Моноплоид (1n) Делеция Терминальная (концевая) Замена оснований Транзиции пурин–пурин; пиримидин-пиримидин ( А « Г; Т « Ц )
Полиплоидия Триплоид (3n); Интеркалярная (интерстициальная) Трансверсии Пурин – пиримидин (А«Т; А«Ц; Г«Ц; Г«Т)
Тетраплоид (4n); Дупликация Вставка (удаление) одного или нескольких оснований (мутация со сдвигом рамки считывания) Миссенс-мутации (изменение смысла)
Гексаплоид (6n). Инверсия Перицентрическая (охватывающая центромеру)
Анеуплоидия Нуллисомик (2n-2); Парацентрическая (околоцентромерная)
Моносомик (2n-1); Транс-локация Реципрокная (реципрокный обмен участками негомологичных хромосом)
Трисомик (2n+1); Транспозиция (нереципрокная, в пределах одной хромосомы) Нонсенс-мутации (терминация по сигналу ТК)
Тэтрасомик (2n+2) Робертсоновская (центрическое слияние акроцентриков с потерей коротких плеч)

 

4.2. Изменения числа и порядка расположения генов (хромосомные перестройки). Хромосомные перестройки (их также называют аберрациями) возникают в случае двух или более хромосомных разрывов. Они могут затрагивать число генов в хромосомах (делеции и дупликации) и локализацию генов в хромосомах (инверсии и транслокации).

· Делеция, или нехватка. Утрачен участок хромосомы. Случай концевой (терминальной) делеции был подробно рассмотрен выше. Интеркалярные (интерстициальные) делеции возникают в случае двух разрывов хромосом с образованием трех фрагментов.

· Дупликация, или удвоение. Один из участков хромосомы представлен в хромосомном наборе более одного раза.

· Инверсия возникает в результате двух разрывов в одной хромосоме, но при условии, что внутренний фрагмент хромосомы совершит поворот на 180 градусов, т.е. его полярность измениться на обратную. Инверсии не влияют на жизнеспособность клетки и не вызывают фенотипических изменений, за исключением случаев, где важен эффект положения генов.Инвертированный участок хромосомы может включать или не включать центромеру. В первом случае инверсия называется перицентрической (т.е. охватывающей центромеру), а во втором – парацентрической (околоцентромерной).

 

  Рис. 1. Схематическое изображение перестроек разного типа

 

Транслокации. Если разрывы оказываются в двух хромосомах, то при воссоединении возможен обмен фрагментами. При симметричном воссоединении образуются новые хромосомы, в которых произошел обмен дистальными участками негомологичных хромосом. Такие транслокации называются реципрокными.

Участок хромосомы может также изменять свое положение и без реципрокного обмена, оставаясь в той же хромосоме, или включаясь в какую-нибудь другую. Такие нереципрокные транслокации иногда называют транспозициями.

В случае соединения двух акроцентрических хромосом в районе их центромер с потерей коротких плеч наблюдается центрическое слияние – робертсоновская транслокация.

4.3. Изменения индивидуальных генов (внутригенные изменения, или мутации в наиболее узком смысле этого слова). Более точное название внутригенных мутаций – точковые мутации, так как очень сложно отличить истинные внутригенные мутации от малых структурных изменений (таблица 1).

Генная, или точечная (поскольку она относится к определенному генному локусу), мутация - результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре мРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах.

Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, делении, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто - и к образованию измененного полипептида. Например, делеция вызывает сдвиг рамки.

Генные мутации, возникающие в гаметах или в будущих половых клетках, передаются всем клеткам потомков и могут влиять на дальнейшую судьбу популяции. Соматические генные мутации, происходящие в организме, наследуются только теми клетками, которые образуются из мутантной клетки путем митоза. Они могут оказать воздействие на тот организм, в котором они возникли, но со смертью особи исчезают из генофонда популяции. Соматические мутации, вероятно, возникают очень часто и остаются незамеченными, но в некоторых случаях при этом образуются клетки с повышенной скоростью роста и деления. Эти клетки могут дать начало опухолям - либо доброкачественным, которые не оказывают особого влияния на весь организм, либо злокачественным, что приводит к раковым заболеваниям.

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия - заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух (и двух (цепей), к которым присоединены четыре простетические группы гема.

От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав (-цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HbS). Последовательности аминокислот в нормальных и аномальных (-цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутамидовая кислота замещена валином. В результате такого, казалось бы, незначительного изменения гемоглобин S кристаллизуется при низких концентрациях кислорода, а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю.

В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40%. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидноклеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель -малярийный плазмодий - не может жить в эритроцитах, содержащих аномальный гемоглобин.

Наследственные заболевания обусловлены нарушениями в процессах хранения, передачи и реализации генетической информации. С развитием генетики человека, в том числе и генетики медицинской выяснилась наследственная природа многих заболеваний и синдромов, считавшихся ранее болезнями с неустановленной этиологией. Роль наследственных факторов подтверждается более высокой частотой ряда заболеваний в некоторых семьях по сравнению с населением в целом. Изучением наследственных заболеваний человека занимается преимущественно медицинская генетика.

В основе наследственных заболеваний лежат мутации — преимущественно хромосомные и генные, соответственно чему условно говорят о хромосомных болезнях и собственно наследственных (генных) болезнях. Мутация ведёт к нарушению синтеза определенного полипептида (структурного белка или фермента). В зависимости от того, какова роль этого полипептида в жизнедеятельности организма, у больного возникают нарушения (изменения фенотипа) локального или системного порядка.

Наиболее рациональна классификация наследственных заболеваний по характеру метаболических расстройств:

– нарушения обмена аминокислот (примеры: фенилпировиноградная олигофрения, тирозиноз, алкаптонурия);

– нарушения обмена липидов (болезнь Нимана — Пика, болезнь Гоше); нарушения обмена углеводов (галактоземия, фруктозурия);

– нарушения минерального обмена (гепатоцеребральная дистрофия);

нарушения билирубинового обмена (синдром Криглер — Нацжара, синдром Дубинина — Джонсона).

Однако поскольку биохимические механизмы большинства наследственных заболеваний пока неизвестны, и, следовательно, патогенетическая классификация ещё не может быть полной, её дополняют классификацией по органно-системному принципу:

– наследственные заболевания крови (гемолитическая болезнь новорожденных, гемоглобинопатии);

– эндокринной системы (адреногенитальный синдром, сахарный диабет);

– наследственные заболевания с преимущественным поражением почек (фосфат-диабет, цистиноз); соединительной ткани (болезнь Марфана, мукополисахаридозы);

– наследственные заболевания с преимущественным поражением нервно-мышечной системы (прогрессирующие мышечные дистрофии) и т.д.

В зависимости от того, где локализован патологический (мутантный) ген — в аутосоме или в половой хромосоме— и каковы его взаимоотношения с нормальнымаллелем, т. е. является ли мутация доминантной (нормальный ген подавляется патологич еским) или рецессивной (патологический ген подавляется нормальным), различают следующие основные типы наследования:

– аутосомно-доминантный,

– аутосомно-рецессивный,

– сцепленный с полом (или ограниченный полом).

Тип наследования устанавливается путём анализа родословной. При составлении последней учитываются распространение в семье изучаемого заболевания и родственного отношения между больными. Построение и анализ родословной составляют предмет клинико-генеалогического исследования.

При заболеваниях, наследуемых по аутосомно-доминантному типу, мутантный ген проявляется уже в гетерозиготном состоянии; больные мальчики и девочки рождаются с одинаковой частотой; патологическая наследственность прослеживается в родословной " по вертикали"; по крайней мере один из родителей больного также болен.

По аутосомно-доминантному типу наследуются, например, арахнодактилия, ахондроплазия, брахидактилия, геморрагическая телеангиэктазия Ослера, гипербилирубинемия, нейрофиброматоз Реклингаузена, пельгеровская аномалия лейкоцитов, полидактилия, птознаследственный, пурпура тромбоцитопеническая идиопатическая, эктопия хрусталика и др.

При заболеваниях, наследуемых по аутосомно-рецессивному типу, мутантный ген проявляется лишь в гомозиготном состоянии; больные мальчики и девочки рождаются с одинаковой частотой; родители больных фенотипически здоровы, но являются гетерозиготными носителями мутантного гена; патологическая наследственность прослеживается в родословной семьи " по горизонтали"; вероятность рождения больных детей возрастает в случае кровного родства родителей. Если один из родителей гомозиготен по патологическому рецессивному гену, а другой является его гетерозиготным носителем, то в половине случаев дети могут оказаться больными, и создаётся впечатление наследования заболевания по доминантному типу. Такое явление носит название псевдодоминирования. От истинного доминирования оно отличается тем, что больные с рецессивной мутацией в браке со здоровыми людьми всегда будут давать здоровое потомство, а здоровые в браке с гетерозиготными носителями с определенной частотой (25%) будут иметь больных детей. По аутосомно-рецессивному типу наследуются агаммаглобулинемия, алкаптонурия, альбинизм, амавротическая идиотия, гепатоцеребральная дистрофия, дистония мышечная деформирующая, муковисцидоз, серповидноклеточная анемия и др.

Из заболеваний, сцепленных с полом или ограниченных полом, для клиники особое значение имеют болезни, обусловленные рецессивными мутациями в Х-хромосоме (этот тип наследования называется также Х-хромосомным). Женщины с такого типа мутацией, как правило, фенотипически здоровы, поскольку рецессивному патологическому гену противостоит у них нормальный аллель другой Х-хромосомы. У мужчин же мутантный ген представлен в единственном числе и определяет патологию фенотипа. При болезнях, передающихся по Х-хромосомному типу, действие мутантного гена проявляется только у гетерогаметного пола (т. е. у мужчин); в отягощенных семьях заболевает половина сыновей, а половина дочерей — носители мутантного гена (кондукторы); родители клинически здоровы. Болезнь часто обнаруживается у сыновей сестёр больного (пробанда) или у его двоюродных братьев по материнской линии. Больной отец не передаёт дефектный ген сыновьям.

По Х-хромосомному типу наследуются гемофилия А, гемофилия В, периодический паралич, пигментный ретинит, фосфат-диабет, цветовая слепота и др.

Перечисленные типы наследования предусматривают главным образом моногенные заболевания (определяемые мутацией одного гена). Однако патологическое состояние может зависеть от двух и более мутантных генов. Ряд патологических генов обладает сниженной пенетрантностью. При этом присутствие их в геноме, даже в гомозиготном состоянии, необходимо, но недостаточно для развития болезни. Т. о., не все типы наследования болезней человека укладываются в перечисленные схемы.

Поскольку всякий фенотип, как нормальный, так и патологический, детерминируется не только генотипом и является результатом взаимодействия генотипа и среды, постольку наследственной патологии присущ значительный клинический полиморфизм: в пределах одной нозологической единицы могут встречаться различные клинические синдромы, степень тяжести заболевания также варьирует в широких пределах. Большая вариабельность клинических проявлений и течения Н. з. наблюдается порой даже у членов одной семьи. Для объективной оценки соотносительной роли наследственных факторов и среды в этиологии и патогенезе Н. з. важно изучать особенности их клинической картины и течения у однояйцевых и разнояйцевых близнецов.

Нозологическая принадлежность наследственного заболевания устанавливается на основе всестороннего клинического (в том числе клинико-генеалогического) и лабораторного обследования. Большую диагностическую ценность имеют биохимические, электрофизиологические, цитоморфологические, иммунологические и др. лабораторные методы, часто позволяющие идентифицировать не только заболевание, но и гетерозиготное носительство мутантного гена. Иногда диагностику облегчает плейотропный эффект генов, т. е, множественность зависящих от них фенотипических проявлений. В частности, действие патологического гена может проявиться не только в заболевании, но и в ряде других, обычно индифферентных для организма признаков, по которым в сомнительных случаях и устанавливается присутствие гена-" виновника".

Благодаря прогрессу медицинской генетики и расширению представлений о характере наследования различных заболеваний и влиянии факторов внешней среды на проявляемость мутантных генов стали намного яснее пути лечения и профилактики наследственных заболеваний. Основные принципы лечения: исключение или ограничение продуктов, превращения которых в организме в отсутствии необходимого фермента приводят к патологическому состоянию; заместитительная терапия дефицитным ферментом или нормальным конечным продуктом извращённой реакции; индукция дефицитных ферментов. Большое значение придаётся фактору своевременности терапии, которую следует начинать до развития у больных выраженных нарушений. Некоторые биохимические дефекты могут с возрастом частично компенсироваться. В перспективе большие надежды возлагаются на генную инженерию, под которой подразумевается направленное вмешательство в структуру и функционирование генетического аппарата — удаление или исправление мутантных генов, замена их нормальными.

Важнейшей задачей медицинской генетики остаётся профилактика Н. з., осуществляемая в основном через медико-генетические консультации.

 


Поделиться:



Популярное:

  1. III.2. КЛАССИФИКАЦИЯ И ТОНКАЯ СТРУКТУРА ХРОМОСОМЫ
  2. А по методике построения сетей они бывают распределенными, многоуровневыми и локальными.
  3. Автокорреляция уровней динамического ряда и характеристика его структуры
  4. Адаптации человека на популяционно-видовом уровне
  5. Административное принуждение: понятие и классификация.
  6. Азотные удобрения, их классификация
  7. Антропологическая классификация
  8. Аппендицит: 1) этиология и патогенез 2) классификация 3) патоморфология различных форм острого аппендицита 4) патоморфология хронического аппендицита 5) осложнения
  9. Ассортимент товаров. Классификация ассортимента, его свойства и показатели. Управление ассортиментом.
  10. Ассоциативный метод выявления уровней речевого развития дошкольника
  11. Атрофия: 1) определение и классификация 2) причины физиологической и патологической атрофии 3) морфология общей атрофии 4) виды и морфология местной атрофии 5) значение и исходы атрофии.
  12. АЧХ и ФЧХ идеального усилителя. Классификация реальных усилителей по виду АЧХ. Линейные искажения.


Последнее изменение этой страницы: 2016-03-25; Просмотров: 1366; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь