Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
III.2. КЛАССИФИКАЦИЯ И ТОНКАЯ СТРУКТУРА ХРОМОСОМЫ
Классификация и номенклатура равномерно окрашенных хромосом человека впервые были приняты на международном совещании в 1960 году в г. Денвере, в дальнейшем несколько измененные и дополненные (1963 г., Лондон и 1966 г., Чикаго). Согласно классификации все хромосомы человека разделены на 7 групп, расположенных в порядке уменьшения их длины, и обозначаются буквами английского алфавита от А до G. Все пары хромосом стали нумеровать арабскими цифрами. Группа А (1 —3-я) — самые большие хромосомы; I и 3-я — метаиентрические, 2-я — субметацентрическая. Группа В (4 и 5-я) — крупные субметацентрические хромосомы. Группа С (6— 12-я и Х-хромосома) — субметацентрические хромосомы среднего размера. Группа D (13— 15-я) — акроцентрические хромосомы средних размеров. Группа Е (16—18-я) — маленькие субметацентрические хромосомы. Группа F (19 и 20-я) — самые маленькие метацентрические хромосомы. Группа G (21, 22-я и Y) - самые маленькие акроцентрические хромосомы. Предложенная классификация позволяла четко различать хромосомы, принадлежащие к различным группам (рис. III.3 и III.4). С 1960 г. начинается бурное развитие клинической цитогенетики: в 1959 г. Дж.Лежен открыл хромосомную природу синдрома Дауна; К.Форд, П.Джекобе и Дж.Стронг описали особенности кариотипа при синдромах Клайнфельтера и Тернера; в начале 70-х гг. была открыта хромосомная природа синдромов Эдвардса, Патау, синдрома «кошачьего крика»; описана хромосомная нестабильность при ряде наследственных синдромов и злокачественных заболеваниях. Вместе с тем применение метода получения равномерно окрашенных хромосом оказалось недостаточно эффективным для идентификации хромосом. В начале 70-х гг. были разработаны методы дифференциальной окраски хромосом, которые позволяли однозначно идентифицировать каждую хромосому. Методы были основаны на способности некоторых красителей специфически связываться с конкретными участками хромосом в зависимости от их структурно-функциональной организации. Предложенные методы выявляли линейную неоднородность (сегменты) хромосом. На практике наибольшее применение получили методы дифференциальной окраски красителем Гимза (G-окраска) и флюоресцирующим красителем акрихином или акрихинипритом (Q-окраска).
Рис. III.3. Хромосомный набор мужчины
Рис. III.4. Хромосомный набор женщины
На рис. III.5 представлены хромосомы человека при G-окраске. Хорошо видно, что каждая хромосома человека имеет только ей свойственную последовательность разношироких полос.
Рис. III.5. Схематическое изображение дифференциальной окраски хромосом человека по G-методу
Это позволяет точно идентифицировать любую из хромосом и обнаруживать относительно крупные изменения в их структуре. При анализе метафазных хромосом средней конденсации можно четко различить около 350—400 относительно крупных сегментов на гаплоидный набор. На стадиях, предшествующих метафазе, хромосомы менее спирализованы и поэтому имеют большую поперечную подразделенность. Были разработаны методы анализа хромосом на делящихся клетках в стадии прометафазы. Использование этого методического подхода позволило получить хромосомы с разной степенью сегментации — от 800 до 2500 сегментов на гаплоидный набор. На рис. III.6 представлены дифференциально окрашенные X и Y-хромосомы с различными уровнями спирализации.
Рис. III.6. Структура Х- и Y-хромосомы человека при дифференциальной окраске с тремя уровнями разрешения: Слева — примерно 400 полос на гаплоидный набор, вцентре — примерно 550, справа — 850 полос
Использованный подход дает возможность точно устанавливать точки разрывов в перестроенных хромосомах, даже если в перестройку вовлечены небольшие участки хромосом. Поперечная исчерченность, обнаруживаемая различными методами, в принципе выявляет одни и те же сегменты хромосомы и является результатом неравномерной конденсации хроматина по всей ее длине. В зависимости от степени спирализации ДНК в хромосоме выделяют гетерохроматиновые и эухроматиновые районы, для которых характерны различные функциональные и генетические свойства. Гетерохроматиновый район представляет собой участок конденсированного хроматина (высокоспирализованная ДНК), который выявляется при дифференциальном окрашивании в виде темных полос. Присутствие гетерохроматина можно обнаружить и винтерфазном ядре, где он отчетливо выявляется в виде интенсивно окрашенных глыбок хроматина. Считывания генетической информации с данных участков не происходит. Различают структурный и факультативный гетерохроматин. Структурный гетерохроматин постоянно присутствует в определенных регионах хромосомы. Например, он всегда обнаруживается вокруг центромер всех хромосом. Факультативный гетерохроматин появляется в хромосоме при сверхспирализации эухроматиновых районов. Факультативной гетерохроматизацией может быть охвачена целая хромосома. Так, в клетках женского организма одна из Х-хромосом полностью инактивирована путем гетерохроматизации уже на ранних этапах эмбрионального развития. Ее можно обнаружить в виде глыбки гетерохроматина на периферии ядра. Такая инактивированная Х-хромосома называется половым хроматином, или тельцем Барра (рис. III. 7). Благодаря гетерохроматизации Х-хромосомы в клетках женского организма происходит выравнивание количества генов, функционирующих в мужском и женском организмах, поскольку у мужчин имеется только одна Х-хромосома. Эухроматиновые регионы хромосом в интерфазном ядре не видны, поскольку представлены хроматином в деконденсированном состоянии. Это указывает на их высокую метаболическую активность. Действительно, эухроматиновые районы содержат уникальные гены, контролирующие синтез различных белков. При дифференциальном окрашивании метафазных хромосом они определяются как светлые полосы. Изучение химического состава хромосом показало, что они состоят из дезоксирибонуклеиновой кислоты (ДНК), гистонов, негистонных белков и небольшого количества РНК. Молекула ДНК несет отрицательные заряды, распределенные по всей длине, а присоединенные к ней белки, гистоны, заряжены положительно. В каждой хромосоме содержится только одна молекула ДНК. Однако размеры молекул ДНК хромосом огромны. Они могут достигать сотен микрометров и даже сантиметров. В кариотипе человека самая большая хромосома — 1-я; длина ее полностью раскрученной ДНК составляет около 7 см, что значительно больше не только размеров ядра клетки, но и самой клетки. Суммарная длина молекул ДНК всех хромосом одной клетки человека составляет более 170 см.
Рис. III.7. Клетки слизистой оболочки ротовой полости: А — клетки женщины имеют одно тельце Барра; Б — клетки мужчины, тельце Пирра отсутствует; В— клетки мужчины с хромосомнойпатологией (XXXY), присутствуют два тельца Бара
Несмотря на свои гигантские размеры, молекулы ДНК функционируют в пределах таких микрообразований, как хромосомы. Поэтому хромосомы ядер клеток должны представлять собой сильно укороченные (конденсированные) структуры ДНК. Это достигается за счет специфической укладки молекул ДНК — многоуровневой спирализации. Основной структурной единицей хромосомы является нуклеосома (рис. III. 8).
Рис. III. 8. Структура нуклеосом и их соотношение с хромосомой и молекулой ДНК
Каждая нуклеосома содержит по две молекулы четырех различных типов гистонов, объединенных в октамер (восьмигранник), обвитый нитью ДНК. Нуклеосомы и соединяющие их участки ДНК формируют спиральную структуру — хроматиновос волокно. На каждый виток такой спирали приходится 6 нуклеосом. Так формируется структура хромосомы (рис. III.9). Подобная организация позволяет упаковывать очень длинную молекулу ДНК в компактную структуру. При конденсации происходит уменьшение длины молекулы ДНК в 10 тыс. раз, так что конденсированные хромосомы в среднем имеют длину порядка 200 нм (т.е. 200 * 10-9м). Это обеспечивает возможность точного и быстрого деления генетического материала материнской клетки между дочерними клетками (митоз) и уменьшение числа хромосом вдвое при образовании половых клеток (мейоз). Хромосомы выполняют функцию основного генетического аппарата клетки. В них в линейном порядке расположены гены, каждый из которых занимает строго определенное место, называемое локусом. Альтернативные формы гена (т.е. различные его состояния), занимающие один и тот же локус, называются аллелями (от греч. allеlon — взаимно другой, иной). Любая хромосома содержит только единственный аллель в данном локусе, несмотря на то что в популяции могут существовать два, три и более аллелей одного гена.
Рис..III9. Общая схема строения хромосомы
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 2031; Нарушение авторского права страницы