![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Электромагнитные муфты управления
Для регулирования частоты вращения, вращающего момента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением. Эти муфты можно подразделить на индукционные и электромагнитные. Индукционные муфты (рис. 18.1) по принципу действия аналогичны асинхронному двигателю с короткозамкнутым ротором. Приводной двигатель соединяется со сплошным якорем 1, ведомый вал связан с индуктором 2. Катушка возбуждения 4 создает постоянный магнитный поток 5, замыкающийся по якорю 1. При вращении якоря магнитное поле катушки индуктора пересекает цилиндрическое тело якоря, и в нем наводятся вихревые токи. Взаимодействие этих токов с магнитным полем создает силу, которая увлекает индуктор в направлении вращения якоря. Материал якоря должен обладать малым удельным электрическим сопротивлением, что обеспечивает возникновение достаточно больших вихревых токов, и высокой магнитной проницаемостью для получения возможно больших значений магнитного потока. Рис. 18.1. Индукционная муфта: 1 - якорь; 2 -индуктор; 3 - магнитная система; 4 - катушка возбуждения; 5 - магнитный поток
Регулируя ток возбуждения На рис. 18.2 показаны механические характеристики индукционной муфты. Рис. 18.2. Механические характеристики индукционной муфты при различном токе возбуждения
Механические характеристики индукционной муфты существенно зависят от нагрузки. Поэтому для стабилизации скорости применяются специальные регулирующие устройства. Более широко применяются электромагнитные муфты, в которых используется электромагнитное усилие притяжения между ферромагнитными телами. Эти муфты удобны в эксплуатации, имеют малые габаритные размеры и небольшое время срабатывания, передают большие мощности на валу при сравнительно малой мощности управления. Простейшая конструкция электромагнитной фрикционной муфты представлена на рис. 18.3.
![]() Рис. 18.3. Электромагнитная фрикционная муфта: а - разрез муфты; б - поверхность трения
Постоянное напряжение подводится к щеткам, скользящим по контактным кольцам 1, соединенным с выводами обмотки 2. Обмотка имеет цилиндрическую форму и окружена магнитопроводом ведущей части 3 муфты. Направляющая втулка 7 имеет выступ 6, который входит в паз 8 полумуфты 5, которая может перемещаться вдоль оси, оставаясь соединенной с валом 10. В обесточенном состоянии пружина 9 упирается в направляющую втулку 7, жестко закрепленную на валу 10, и отодвигает подвижную часть полумуфты 5 вправо. При этом поверхности трения (диски 4) не соприкасаются и ведомый вал 10 разобщен с ведущим валом 11. При подаче на обмотку управляющего напряжения возникает магнитный поток Ф. На полумуфты 3, 5, выполненные из магнитомягкого материала, начинает действовать электромагнитная сила, притягивающая их друг к другу. Таким образом, полумуфты и обмотка представляют собой электромагнит. Между дисками 4, жестко связанными с деталями 3 и 5, возникает сила нажатия, обеспечивающая необходимую силу трения и их надежное сцепление. В ферропорошковой муфте барабанного типа (рис. 18.4) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Рис. 18.4. Электромагнитная ферропорошковая муфта барабанного типа
Внутри цилиндра располагается электромагнит 4, связанный с ведомым валом 6. Обмотка 5 электромагнита питается через контактные кольца. Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбонильное железо) с зернами размером от 4-6 до 20-50 мкм, смешанными с сухим (тальк, графит) или жидким (трансформаторное, кремнийорганические масла) наполнителем. При обесточенной обмотке и вращении ведущей части (барабана) электромагнит и ведомый вал остаются неподвижными, т.к. ферромагнитные зерна наполнителя свободно перемещаются относительно друг друга. При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды в барабане резко возрастает. Увеличивается сила трения между барабаном и электромагнитом. На ведомом валу появляется вращающий момент. При определенном значении тока возбуждения ферромагнитный порошок и наполнитель полностью затвердевают. Барабан и электромагнит становятся жестко связанными. Сила трения, возникающая на единице внутренней поверхности барабана:
где
оно создаётся магнитным потоком;
Момент, передаваемый муфтой, равен:
где R – радиус барабана; L – его длина. Если положить, что магнитное сопротивление барабана и электромагнита равны нулю и
где
Рассмотрим характеристики муфты в статическом режиме. Во втором квадранте на рис. 18.5 изображена зависимость момента, передаваемого муфтой, от тока возбуждения В первом квадранте представлены механическая характеристика двигателя Рис. 18.5. Характеристики муфты и приводного двигателя
Мощность, отдаваемая двигателем,
Потери При токе возбуждения Пусть моменты линейно зависят от угловой скорости:
где
Выразим потери
При
Для определения
Охлаждающая поверхность муфты
где
На зерна ферромагнитного порошка кроме электромагнитных сил Это отношение увеличивается с ростом диаметра муфты, угловой скорости и уменьшается с ростом индукции в зазоре. Ферропорошковые муфты имеют большое быстродействие благодаря отсутствию якоря. В схемах автоматики порошковая муфта является инерционным звеном первого порядка. Большим преимуществом ферропорошковой муфты является отсутствие быстроизнашивающихся дисков трения. Ферропорошковые муфты целесообразно применять там, где требуются высокое быстродействие, большая частота включения и плавное регулирование скорости ведомого вала. Возможны два варианта исполнения гистерезисных муфт: в первом магнитное поле индуктора создается обмоткой, во втором - постоянными магнитами. Недостатком первого варианта является наличие контактной системы для передачи тока в индуктор, достоинством - возможность электрического управления муфтой. Муфты с постоянными магнитами (магнитогистерезисные) обладают высокой надежностью. Однако регулирование передаваемого момента в них затруднено. В магнитогистерезисной муфте (рис. 18.6) постоянные магниты 1 с полюсными наконечниками 2 укреплены в магнитопроводе 3 индуктора, связанного с ведущим валом. Рис. 18.6. Магнитогистерезисная муфта с радиальным рабочим зазором
На ось ведомого вала насажен ротор, состоящий из втулки 5 из немагнитного или магнитомягкого материала и колец 4 активного слоя. Кольца активного слоя изготовлены из материала с широкой петлёй гистерезиса, имеющей высокие значения остаточной индукции и коэрцитивной силы. Шихтованная структура активного слоя позволяет уменьшить вихревые токи и асинхронный вращающий момент. Пусть ротор заторможен, а индуктор вращается приводным двигателем с угловой скоростью
где Мощность, передаваемая активному слою через рабочий зазор, определяется:
где
Взаимодействие поля постоянных магнитов индуктора с полем, образованным активным слоем, создает на роторе гистерезисный момент:
Если ведомый вал не заторможен, то под действием момента
Скольжение изменяется от 1 до 0. При разгоне ротора частота перемагничивания меняется:
и потери на гистерезис уменьшаются:
Полезная мощность, передаваемая на ведомый вал, определится:
Момент, передаваемый муфтой на ведомый вал, равен:
Таким образом, момент на ведомом валу не зависит от частоты его вращения. Если момент нагрузки
где
Угол
При дальнейшем возрастании момента нагрузки (МН> MГ) муфта переходит в асинхронный режим, когда частота вращения муфты меньше частоты вращения индуктора. На рис. 18.7 приведены механические характеристики муфты, представляющие собой зависимости момента нагрузки Рис. 18.7. Механические характеристики гистерезисной муфты
Пока При В этом режиме скольжение отлично от нуля, ротор отстает от вращающегося индуктора и в нем создается дополнительный момент, как в асинхронном двигателе. Преимущество гистерезисной муфты заключается в постоянстве передаваемого момента. Если нагрузочный момент Гистерезисные муфты применяются для передачи момента в агрессивную среду, отделенную от окружающей среды металлической немагнитной оболочкой и находящуюся под высоким давлением. В этом случае применяются муфты с аксиальным рабочим зазором. Ведущая часть с индуктором отделена немагнитной стенкой от ведомой части с активным слоем в виде колец. Лекция № 19 Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 765; Нарушение авторского права страницы