Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Передвижение органических веществ по растению.



Передвижение минеральных и органических веществ по растению имеет очень большое значение, так как это процесс, с помощью которого осуществляется фи­зиологическая взаимосвязь отдельных органов. Между органами, поставляющими питательные вещества, и органами, потребляющими их, создаются так называе­мые донорно-акцепторные связи. Донором минеральных питательных веществ служит корень, донором органических веществ — лист. В этой связи в растениях существуют два основных тока питательных веществ — восходящий и нисходящий. Большую роль в изучении путей передвижения отдельных питательных веществ сыграл прием кольцевания растений. Этот прием заключается в наложении коль­цевых вырезок на стебель растения; при этом кора (флоэма) удаляется, а древесина (ксилема) остается неповрежденной. С помощью этого приема еще в конце XVII в. итальянским исследователем М. Малышги было показано, что восходящий ток воды с минеральными веществами идет по ксилеме, нисходящий ток органических ве­ществ из листьев — по элементам флоэмы. Вывод этот был сделан М. Малышги на основании того, что над кольцевой вырезкой листья оставались тургесцентными, несмотря на удаление коры, в них продолжала поступать вода. Ток органических веществ приостанавливался, и это приводило к образованию над вырезкой утол­щении (наплывов). Ряд уточнений в вопрос о путях и направлении передвижения веществ по растению внесли исследования с применением меченых атомов. В настоящее время ученые считают, что система транспорта у растений вклю­чает внутриклеточный, ближний и дальний транспорт. Ближний транспорт — передвижение веществ между клетками внутри органа по неспециализирован­ным тканям, например по апопласту или симпласту. Дальний транспорт — это перемещение веществ между органами по специализированным тканям — про­водящим пучкам, т. е. по ксилеме и флоэме. Вместе ксилема и флоэма образуют проводящую систему, которая пронизывает все органы растения и обеспечивает непрерывную циркуляцию воды и веществ.

Плазмолиз и циторриз, их роль в жизнедеятельности клетки.

 

Плазмолиз - отхождение протопласта от клеточной стенки, наблюдающееся при погружении растительной клетки в гипертонический раствор какого-либо вещества.

Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается.

Уменьшение объема клеточной вакуоли сопровождается плазмолизом. В ходе плазмолиза форма плазмолизированного протопласта меняется. Характер плазмолиза зависит от ряда факторов:

· от вязкости цитоплазмы;

· от разности между осмотическим давлением внутриклеточной и внешней среды;

· от химического состава и токсичности внешнего гипертонического раствора;

· от характера и количества плазмодесм;

· от размера, количества и формы вакуолей.

 

Вначале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым.

Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым. Вогнутый плазмолиз часто обратим; в гипотоническом растворе клетки вновь набирают потерянную воду, и происходит деплазмолиз.

Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого. Выпуклый плазмолиз обычно необратим и ведет к гибели клеток.

Выделяют также судорожный плазмолиз, подобный выпуклому, но отличающийся от него тем, что сохраняются цитоплазматические нити, соединяющие сжавшуюся цитоплазму с клеточной стенкой, и колпачковый плазмолиз, характерный для удлиненных клеток.

 

Циторриз - состояние обезвоженной растительной клетки, на поверхности которой образуются волнообразные изгибы.

Возникает у клеток с эластичными оболочками. В молодых листьях винограда циторриз можно обнаружить при водном стрессе. Такого рода явление наблюдается в клетках, потеря воды которыми произошла не осмотическим путем, а вследствие испарения в воздушную среду. При подвядании клетки в этом случае плазмолиз не наступает. Протоплазма таких клеток, сокращаясь в объеме, не отделяется от оболочки, а увлекает за собой отдельные участки последней.

 

Пластиды: строение и функции.

  Хлоропласты Хромопласты Лейкопласты
Строение Образуются из маленьких бесцветных инициальных частиц — пропластид, которые обнаруживаются в меристематических клетках. Имеют двойную мембрану.
- Овальная форма, зелёного цвета; - Внутренняя мембрана образует стромы – ламеллы и тилакоиды. Тилакоиды собраны в скопления – граны; - Образуются на свету. - Жёлтая, оранжевая или красная окраска; - Образуются их хлоропластов; - Каратиноиды не встроены в мембрану, а находятся в матриксе в виде капель, кристаллов. - Образуются из протопластидов в темноте; - Бесцветные; - Слаборазвитая внутренняя мембрана.
Функции 1. Использование световой энергии и создание органических веществ из неорганических (фотосинтез) 2. Имея свою ДНК, играют определенную роль в передаче наследственных признаков. Окраска плодов Накопление крахмала или других запасных веществ
         

 

Показатели транспирации

Транспирация – это физиологический процесс испарения воды растением. Транспирация необходима:

1. транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура транспирирующего листа на 5-7 градусов ниже температуры окружающего воздуха;
2. при высокой температуре разрушаются хлоропласты и угнетается процесс фотосинтеза (оптимальная температура для фотосинтеза 30-35º С);

3. транспирация создает непрерывный ток воды из корневой системы к листьям и связывает все органы растения в единое целое;

4. с транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом интенсивнее транспирация, тем быстрее идет процесс.

 

Значение транспирации:

- является верхним двигателем водного тока;

- передвижение воды по растению;

- связано с поступлением CO2;

- влияет на метаболизм в растении;

- влияет на температуру растения.


Показатели транспирации:

Интенсивность транспирации – величина, показывающая, сколько граммов воды испарилось с единицы площади за единицу времени (меняется от 1г до 250 г).

Транспирационный эффект – число г воды при образовании 1 г сухого вещества (от 125 г до 1000 г).

Зависит от вида растений, ярусности листьев, условий внешней среды.

Продуктивность транспирации – показывает, сколько г сухого вещества образуется при расходе 1 кг воды (от 1 до 8 г).

Относительная транспирация – отношение интенсивности транспирации к интенсивности испарения со свободной поверхности (от 0, 1 г до 1 г).

Регулирование устьичной транспирации – осуществляется открытием или закрытием устьиц. Их движение обусловлено различными факторами. Как мы уже отмечали, основным, обусловливающим движением устьиц является содержание воды в замыкающих клетках (изменение тургора). Различают гидропассивное и гидроактивное открытие и закрытие устьиц.

Гидропассивная реакция – это закрытие устьичных щелей, вызванное тем, что окружающие паренхимные клетки, переполненные водой, механически сдавливают замыкающие клетки. В результате сдавливания устьица не могут открыться. Гидропассивное движение обычно наблюдается после сильных поливов и может служить причиной торможения процесса фотосинтеза, а также скажется на тех процессах, которые связаны с током воды по растению. Гидроактивная реакция открывания и закрывания – это движение замыкающих клеток, вызванное применением содержания воды. Это связано с изменением концентрации осмотически активных веществ в процессе фотосинтеза, в замыкающих клетках.

 

Факторы, влияющие на транспирацию:

1. С повышением температуры транспирация возрастает.

2. На свету зеленые листья поглощают определенные участки спектра, повышается температура листа и, следовательно, усиливается процесс транспирации. Действие света на транспирацию усиливается тем больше, чем выше содержание хлорофилла. На свету увеличивается проницаемость цитоплазмы.
3. Почва и растение образуют единую водную систему, поэтому уменьшение содержание воды в почве снижает содержание воды в растении и, как следствие, транспирацию.

4. Интенсивность транспирации зависит и от ряда внутренних факторов, и прежде всего от содержания воды в листьях. Всякое уменьшение содержания воды в листьях уменьшает транспирацию.

5. Транспирация зависит и от концентрации клеточного сока. Чем концентрированнее клеточный сок, тем слабее транспирация. Интенсивность транспирации зависит от эластичности клеточных стенок.
6. С увеличением возраста растений интенсивность транспирации снижается.

7. На процесс транспирации влияет смена дня и ночи. В ночной период суток транспирация резко сокращается из-за снижения температуры, повышения влажности воздуха, отсутствия света.
8. Максимум транспирации наблюдается в середине дня.

9. Транспирация зависит от величины листовой поверхности, чем она (листовая поверхность) больше, тем сильнее процесс транспирации.

 


Поделиться:



Популярное:

  1. I. Понятие и система криминалистического исследования оружия, взрывных устройств, взрывчатых веществ и следов их применения.
  2. III Криминалистическое исследование материалов, веществ, изделий из них и следов их применения.
  3. III. Изучение геологического строения месторождений и вещественного состава полезного ископаемого
  4. III. Изучение геологического строения месторождения и вещественного состава руд
  5. V. МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ
  6. Аморфный компонент межклеточного вещества
  7. Аналитические инструментальные методы исследования вещественных доказательств
  8. Антропогенный круговорот веществ
  9. Базовый состав питательных веществ, необходимых «средней» собаке
  10. БАЛАНС ПИТАТЕЛЬНЫХ ВЕЩЕСТВ И ГУМУСА В ПОЧВЕ
  11. Биологические токсичные вещества
  12. Биосфера – глобальная экосистема, ее границы. Живое вещество биосферы. Роль человека в сохранении биоразнообразия.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 2321; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь