Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Границы приспособления и устойчивости, защитно-приспособительные реакции растений, обратимые и необратимые повреждения растений.
Факторы окр. среды, действующие на растения, делятся на абиотические и биотические. По отношению к абиотич. факторам различ. три главных способа приспособления растений: механизмы, позволяющие избежать неблагопр. воздействие (переход в состояние покоя: образование почек, семян, вегетативных органов), специальные структурные приспособления (различные видоизменения листьев, стеблей цветков и т.д.), физиологические механизмы (С4-путь фотосинтеза, САМ-фотосинтез, увеличение вязкости цитоплазмы). По отношению к биотич. факторам у растений также различ. несколько способов приспособл. (естественной защиты): приспособл. морфолог. характера, механизм неспецифического иммунитета, т.е. приспособл. биохимич. характера (фитонциды, фитоалексины, алкалоиды), механизм специфического иммунитет (выработка специализированных антител против возбудителей болезней). Повреждение кл. может быть частичным или полным, обратимым или необратимым. Необр. поврежд. может привести к деструкции и гибели кл. Поврежд. кл. может быть первичным и вторичным. Первичное поврежд. кл. — это результат непосредственного действия повреждающего фактора. Различ. первичные повреждения: а) механические, б) термические, в) химические, г) радиационные. Вторичные поврежд. кл.— это такие, когда результат первичн. воздействия сам становится поврежд. фактором и вторично повреждает здоровые до этого момента структуры. Первич. поврежд. кл. факторы вызывают специфические, присущие только им эффекты. Эти эффекты связаны с характером первич. поврежд. фактора: а) механические — вызывают нарушение целостности структуры тк., кл., межкл. и субкл. структур. в) термические — связаны с денатурацией белков. белково-липидных комплексов и изменением вторичной структуры нуклеиновых кислот с) химические - угнетают активность ферментов, блокируют клеточные рецепторы, вызывают перестройку молекул за счет гидролиза, переаминирования и т.п. d) радиационные — приводят к разрушению молекул с образованием свободных радикалов. Ответная реакция поврежд. кл. стандартна и назыв. неспецифической реакцией клетки на повреждение. Причина такого стандартного ответа закл. в том, что при любом повреждении обязательно: 1) наруш. барьерные функции мембран клеточной и внутриклеточной; 2) выкл. ионные насосы. Основные структурные изменения следующие: а) повыш. прониц. мембраны пострадавшей кл.; б) уменьш. дисперсности коллоидов цитоплазмы и ядра в) увел. вязкости цитоплазмы г) увел. сродства цитоплазмы и ядра к ряду красителей. По степени выраженности различ.: а) паранекроз — обратимые нарушения структуры и функции кл. б) некробиоз — необратимые поврежд. (гибель) части кл. в ткани. в) некроз — массовая гибель кл. с активацией лизосомальных ферментов и разрушением других кл. структур. Этот процесс называется аутолизом. Значение аутолиза — удаление мертвых клеток и замена их новыми клетками или элементами соединительной ткани. ПРОЯВЛЕНИЯ поврежд. КЛ. 1. Ув. Прониц. цитоплазмат. мембраны: 1) белкам и коллоидным краскам (макромолекулы); 2) к аминокислотам и глюкозе (вещества с низкой молекулярной массой); 3) к ионам. 2. Умен. электрического сопротивления ткани.
Изменение физико-химических и функциональных свойств растительных клеток и тканей при повреждения и процессы адаптации; общие принципы адаптивных реакций растений на экологический стресс; стресс-белки. Адаптация, т. е. приспособл. организма к конкретным усл. существования, у индивидуума достигается за счет физиологических механизмов (физиологическая адаптация). Защита от неблагопр. факторов среды у растений обеспечив. особенностями анатомич. стр. (кутикула, корка, механические ткани и т. д), специальн. органами защ. (жгучие волоски, колючки), двигател. и физиологичес. реакциями, выработкой защ. вещ-в (смол, фитоалексинов, фитонцидов, токсинов, защитных белков). Реакцию организма на любые отклонения от нормы называют стрессом (от англ. stress — напряжение). Самые разнообразные неблагопр. факторы могут действовать длительное время или оказывают сравнительно кратковременное, но сильное влияние. В первом случае, как правило, в большей степени проявляются специфические механизмы устойчивости, во втором — неспецифические. У растений различают три фазы стрессовой реакции: 1) первичная стрессовая реакция, 2) адаптация, 3) истощения ресурсов надежности. Факторы, способные вызвать стресс у растительных организмов, можно подразделить на три основные группы: а) физические: недостаточная или избыточная влажность, освещенность или температура, радиоактивное излучение, механические воздействия; б) химические: соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); в) биологические (поражение возбудителями болезней или вредителями, конкуренция с другими растениями, влияние животных, цветение, созревание плодов). По отношению к засухе растения делятся на две группы: 1) пойкило-гидрические, не регулирующие свой водный режим и допускающие большую потерю воды (до воздушно-сухого состояния), не теряя жизнеспособности; 2) гомойогидрические растения, регулирующие водный обмен и отвечающие стрессом на водный дефицит. Устойчивость растения к стрессовому воздействию зависит и от фазы онтогенеза. Наиболее устойчивы растения, находящиеся в покоящемся состоянии (в виде семян, луковиц и т. п.). Наиболее чувствительны — растения в молодом возрасте, в период появления всходов, в период формирования гамет. К перв. Неспециф. процессам, происходящим в клетках растений при сильном и быстро нарастающем действии стрессора, отн. след.: пов. прониц. мембран, деполяризация мембранного потенциала плазмалеммы., вход Са2+ в цитоплазму, сдвиг рН цитоплазмы в кислую сторону, активация сборки актиновых микрофиламентов и сетей цитоскелета, усиление поглощения О2, ускоренная трата АТР, развитие свободнорадикальных реакций, возрастание гидролитических процессов, активация и синтез стрессовых белков, увеличение синтеза этилена и АБК, торможение деления и роста, поглотительной активности клеток и других физиологических и метаболических процессо. Торможение функциональной активности кл. происх. в результате действия ингибиторов и переключения энергетических ресурсов на преодоление неблагопр. сдвигов. Все эти явления адаптационного синдрома (стресса) взаимосвязаны и развиваются как каскадные процессы. Особый интерес вызывают данные об активации в клетках в условиях стресса синтеза так называемых стрессовых белков с одновременным ослаблением синтеза белков, образ. в норм. усл. В ядре и в ядрышке белки теплового шока образ. гранулы, связывая матрицы хроматина, необх. для норм. метаболизма. После прекращения стрессового состояния эти матрицы вновь освобождаются и начинают функционировать. Кроме синтеза шоковых белков при неблагопр. обстоятельствах в кл. возрастает содер. углеводов, пролина, которые участвуют в защ. реакциях, стабилизируя цитоплазму. Благодаря своим гидрофильным группам пролин может образовывать агрегаты, которые ведут себя как гидрофильные коллоиды. Этим объясняется высокая растворимость пролина, а также способность его связываться с поверхностными гидрофильными остатками белков, что повыш. растворим. белков и защищает их от денатурации. Механизмы стресса и адаптации на организменном уровне. На разных уровнях организации приспособление к экстремальным усл. осуществл. у растений неодинаково. Чем выше уровень биологич. организации (клетка, организм, популяция), тем большее число механизмов одновременно участвует в адаптации растений к стрессовым воздействиям. На организменном уровне сохр. все механизмы адаптации, свойственные клетке, но дополняются новыми, отражающими взаимодействие органов в целом растении. Прежде всего это конкурентные отношения между органами за физиологически активные вещества и трофические факторы. Важнейший и очень характерный для растений механизм защиты от последствий действия экстремальных факторов — процесс замены поврежденных или утраченных органов путем регенерации и роста пазушных почек. Во всех этих процессах коррелятивного роста участвуют межклеточные системы регуляции (гормональная, трофическая и электрофизиологическая). При неблагоприятных условиях существования в растениях резко возрастает выработка этилена и АБК, снижающих обмен веществ, тормозящих ростовые процессы, способствующих старению и опадению органов, переходу растительного организма в состояние покоя. Одновременно в тканях снижается содержание ауксина, цитокинина и гиббереллинов.
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1113; Нарушение авторского права страницы