Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Правила составления двойственной задачи
1. Целевая функция исходной задачи (4.1) – (4.3) задается на максимум, а целевая функция двойственной (4.4) – (4.6) – на минимум. 2. Матрица: , (4.7) составленная из коэффициентов при неизвестных в системе ограничений (4.2) исходной задачи (4.1) – (4.3), и аналогичная матрица: (4.8) в двойственной задаче (4.4) – (4.6) получаются друг из друга транспонированием (т.е. заменой строк столбцами, а столбцов – строками). 3. Число переменных в двойственной задаче (4.4) – (4.6) равно числу ограничений в системе (4.2) исходной задачи (4.1) – (4.3), а число ограничений в системе (4.5) двойственной задачи – числу переменных в исходной задаче. 4. Коэффициентами при неизвестных в целевой функции (4.4) двойственной задачи (4.4) – (4.6) являются свободные члены в системе (4.2) исходной задачи (4.1) – (4.3), а правыми частями в соотношениях системы (4.5) двойственной задачи – коэффициенты при неизвестных в целевой функции (4.1) исходной задачи. 5. Если переменная xj исходной задачи (4.1) – (4.3) может принимать только лишь положительные значения, то j–е условие в системе (4.5) двойственной задачи (4.4) – (4.6) является неравенством вида “ ”. Если же переменная xj может принимать как положительные, так и отрицательные значения, то j – соотношение в системе двойственной задачи представляет собой уравнение. Аналогичные связи имеют место между ограничениями (4.2) исходной задачи (4.1) – (4.3) и переменными двойственной задачи (4.4) – (4.6). Если i – соотношение в системе (4.2) исходной задачи является неравенством, то i–я переменная двойственной задачи . В противном случае переменная уj может принимать как положительные, так и отрицательные значения. Двойственные пары задач обычно подразделяют на симметричные и несимметричные. В симметричной паре двойственных задач ограничения (4.2) прямой задачи и соотношения (4.5) двойственной задачи являются неравенствами вида “ ”. Таким образом, переменные обеих задач могут принимать только лишь неотрицательные значения. Для практических целей рассмотренные правила позволяют составить следующую схему соответствия.
Таблица 4.1. – Таблица соответствия
Пример составления двойственной задачи Пример №4.1. Составить двойственную задачу по отношению к задаче, состоящей в максимизации функции (1) при условиях (2) (3) Решение. Для данной задачи и . Число переменных в двойственной задаче равно числу уравнений в системе (2), т.е. равно трем. Коэффициентами в целевой функции двойственной задачи являются свободные члены системы уравнений (2), т.е. числа 23, 21, 12. Целевая функция исходной задачи (1) – (3) исследуется на максимум, а система условий (2) содержит только уравнения. Поэтому в двойственной задаче целевая функция исследуется на минимум, а ее переменные могут принимать любые значения (в том числе и отрицательные). Т.к. все три переменные исходной задачи (1) – (3) принимают только лишь неотрицательные значения, то в системе условий двойственной задачи должны быть три неравенства вида “ ”. Ответ. Для задачи (1) – (3) двойственная задача имеет вид: найти минимум функции при условиях где у1, у2, у3 – любого знака.
Пример №4.2. Построить двойственную задачу к следующей задаче ЛП: Решение. Т.к. целевая функция минимизируется, то неравенства должны быть записаны с помощью знака ≥. Поэтому, прежде чем приступать к построению двойственной задачи, необходимо упорядочить запись исходной, умножив второе неравенство на (-1): . Теперь, вводя двойственные переменные y1, y2, y3 можно записать в соответствии с указанными правилами пару двойственных задач: Задача слева – исходная прямая задача, задача справа – двойственная к исходной задаче. Каждая из задач двойственной пары фактически являтся самостоятельной задачей линейного программирования и может быть решена независимо одна от другой. Однако при определении симплексным методов оптимального плана одной из задач тем самым находится решение и другой задачи. Существующие зависимости между решениями прямой и двойственной задач характеризуются сформулированными ниже леммами и теоремами двойственности. Лемма 1. Если X – некоторый план исходной задачи, а Y – произвольный план двойственной задачи, то значение целевой функции исходной задачи при плане X всегда не превосходит значения целевой функции двойственной задачи при плане Y, т.е. . Лемма 2. Если для некоторых планов X* и Y* прямой и двойственной задач, то X* – оптимальный план произвольный исходной задачи, а Y* – оптимальный план двойственной задачи. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1667; Нарушение авторского права страницы