Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Ограничение и обобщение понятия
Видовые и родовые понятия тесно связаны между собой логическими операциями ограничения и обобщения. Ограничение понятия – это логическая операция перехода от родового понятия к видовому с помощью прибавления к его содержанию какого-либо признака (или нескольких признаков). Вспомним об обратном отношении между объёмом и содержанием понятия: чем больше объём, тем меньше содержание, и наоборот. Ограничение понятия, или переход от родового понятия к видовому – это уменьшение его объёма, а значит – увеличение содержания. Вот почему при добавлении каких-либо признаков к содержанию понятия автоматически уменьшается его объём. Например, если к содержанию понятия «физический прибор » (Ф. п.) прибавить признак «измерять напряжение электрического тока », то оно превратится в понятие «вольтметр » (В), которое будет видовым по отношению к исходному родовому понятию «физический прибор » (рис. 10).
Так же, если к содержанию понятия «геометрическая фигура » (Г. ф.) прибавить признак «иметь равные стороны и прямые углы », то оно превратится в понятие «квадрат » (К), которое будет видовым по отношению к исходному родовому понятию «геометрическая фигура » (рис. 11).
Обобщение понятия – это логическая операция перехода от видового понятия к родовому с помощью исключения из его содержания какого-либо признака (или нескольких признаков). Содержание понятия, лишённое каких-то признаков, уменьшается, но при этом автоматически увеличивается объём понятия, которое из видового становится родовым или обобщается. Например, если от содержания понятия «биология » (Б) отбросить признак «изучать различные формы жизни », то оно превратится в понятие «наука » (Н), которое будет родовым по отношению к исходному видовому понятию «биология » (рис. 12).
Так же, если от содержания понятия «атом водорода » (А. в.) отбросить признак «иметь один электрон », то оно превратится в понятие «атом химического элемента » (А. х. э.), которое будет родовым по отношению к исходному видовому понятию «атом водорода » (рис. 13).
Ограничения и обобщения понятий складываются в логические цепочки, в которых каждое понятие (за исключением начального и конечного) является видовым по отношению к одному соседнему понятию и родовым по отношению к другому. Например, если последовательно обобщать понятие «Солнце », то получится следующая цепочка: Солнце & #8594; звезда & #8594; небесное тело & #8594; & #8594; физическое тело & #8594; форма материи. В этой цепочке понятие «звезда » является родовым по отношению к понятию «Солнце », но видовым по отношению к понятию «небесное тело »; так же понятие «небесное тело » является родовым по отношению к понятию «звезда », но видовым по отношению к понятию «физическое тело » и т. д. Движение по нашей цепочке от понятия «Солнце» к понятию «форма материи » представляет собой серию последовательных обобщений, а движение в обратном направлении – серию ограничений. Если изобразить отношения между понятиями из указанной цепочки на схеме Эйлера, то получатся круги, последовательно располагающиеся один в другом: самый маленький будет обозначать понятие «Солнце », а самый большой – «форма материи ». Пределом цепочки ограничения любого понятия всегда будет какое-либо единичное понятие (см. раздел 1.1.), а пределом цепочки обобщения, как правило, будет какое-либо широкое, философское понятие, например: объект мироздания, форма материи или форма бытия. Наиболее частые ошибки, которые допускают при ограничении и обобщении понятий, заключаются в том, что вместо вида для какого-то рода называют часть из некого целого, и вместо рода для какого-то вида называют целое по отношению к какой-либо части. Например, в качестве ограничения понятия «цветок » предлагают понятие «стебель ». Действительно, стебель – это часть цветка, но ограничить понятие – значит подобрать не часть для целого, а вид для рода. Следовательно, правильным ограничением понятия «цветок » будет понятие «ромашка », или «тюльпан », или «хризантема » и т. п. В качестве обобщения понятия «дерево » нередко предлагают понятие «лес ». Конечно же, лес является неким целым по отношению к деревьям, из которых он состоит, но обобщить понятие – значит подобрать не целое для части, а род для вида. Следовательно, правильным обобщением понятия «дерево » будет понятие «растение », или «объект флоры », или «живой организм » и т. п. Итак, почти любое понятие (за исключением единичных и широких, философских) можно как ограничить, так и обобщить. Другими словами, подобрать для него как видовое понятие, так и родовое. Например, ограничением понятия «человек » (Ч) будет понятие «спортсмен » (С) или «писатель », или «мужчина », или «молодой человек » и т. п., а его обобщением будет понятие «живое существо » (Ж. с.) (рис. 14).
Проверьте себя:
1. Что такое ограничение понятия? 2. Что представляет собой логическая операция обобщения понятия? 3. Каким образом ограничения и обобщения понятий складываются в логические цепочки? Каковы пределы цепочек ограничений и обобщений? 4. Какие ошибки часто допускают при ограничении и обобщении понятий? Продемонстрируйте на самостоятельно подобранных примерах, что целое и часть нельзя путать с видом и родом. 5. Всякое ли понятие можно подвергнуть ограничению или обобщению? Какие понятия не поддаются этим логическим операциям? 6. Подберите десять любых понятий и проделайте с ними ограничение и обобщение, т. е. подберите для каждого как видовое, так и родовое понятие, иллюстрируя эти операции схемами Эйлера.
1.5. Операция определения понятия
Определение понятия – это логическая операция, которая раскрывает содержание понятия. Определения бывают явными и неявными. Явное определение непосредственно раскрывает содержание понятия, даёт прямой ответ на вопрос, чем является объект, который оно обозначает. Например: «Термометр – это физический прибор, предназначенный для измерения температуры », – явное определение. Неявное (контекстуальное) определение раскрывает содержание понятия не прямо, а косвенно, с помощью контекста, в котором это понятие употребляется. Например, из следующей фразы: «Во время этого грандиозного эксперимента сверхточные термометры зафиксировали температуру в 1 000 °C », – косвенно следует ответ на вопрос: «Что такое термометр? » – вытекает неявное определение этого понятия. Понятно, что определениями в полном смысле этого слова надо считать явные определения. В дальнейшем речь пойдёт именно о них. Определения также бывают реальными и номинальными. Реальное определение раскрывает содержание понятия, обозначающего какой-то объект, т. е. они посвящены объектам. Например: «Термометр – это физический прибор, предназначенный для измерения температуры » – реальное определение. Номинальное (от лат. nomen – имя) раскрывает значение термина, которым выражено какое-либо понятие, т. е они посвящены терминам (словам). Например: «Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры », – номинальное определение. Как видим, принципиальной разницы между реальными и номинальными определениями не существует. Они различаются, как правило, по форме, но не по сути. Существует несколько способов определения понятия, но среди них выделяется классический способ, который заключается в том, что определяемое понятие подводится под ближайшее к нему родовое понятие, после чего следует указание на его видовое отличие. Например, определение: «Астрономия – это наука о небесных телах », – построено по классическому способу. В нём определяемое понятие «астрономия » сначала подводится под ближайшее к нему родовое понятие «наука » (астрономия – это обязательно наука, но наука – это не обязательно астрономия), а потом указывается на видовое отличие астрономии от других наук: «…о небесных телах ». Пользуясь классическим способом, вы сможете дать точное и правильное определение любому понятию, конечно, если определяемый объект или термин вам хорошо знаком, и вы знаете, что он собой представляет или что означает, соответственно. Например, нам требуется дать определение понятию «квадрат ». Следуя классическому способу, сначала подведём его под родовое понятие: «Квадрат – это геометрическая фигура », – а затем укажем его видовое отличие от других геометрических фигур, которое заключается в наличии равных сторон и прямых углов. Итак: «Квадрат – это геометрическая фигура, у которой все стороны равны и углы прямые ». Давая определение понятию «квадрат », мы могли бы подвести его под более близкое родовое понятие «прямоугольник », и тогда определение получилось бы следующим: «Квадрат – это прямоугольник, у которого все стороны равны », – однако и приведённое выше определение квадрата раскрывает содержание соответствующего понятия и является верным. Обратите внимание на то, что фактически все определения, встречающиеся в научной, учебной и справочной литературе, например в толковых словарях, построены по классическому способу. Существует несколько логических правил определения. Нарушение хотя бы одного из них приводит к тому, что содержание понятия не раскрывается и определение не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении: 1. Определение не должно быть широким , т. е. определение не должно превышать своим объёмом определяемое понятие. Например, определение: «Солнце – это небесное тело », – является широким : определение «небесное тело » по объёму намного больше определяемого понятия «Солнце ». Из приведённого определения не вполне понятно, что такое Солнце, ведь небесное тело – это и планета, и комета и т. п. В данном случае можно также сказать, что, пользуясь классическим способом определения, мы подвели определяемое понятие «Солнце » под родовое понятие «небесное тело », но не сделали второй шаг – не указали на его видовое отличие. 2. Определение не должно быть узким , т. е. определение не должно быть по своему объёму меньше определяемого понятия. Например, определение: «Геометрия – это наука о треугольниках », – является узким. Геометрия действительно наука о треугольниках, но не только о них, а в нашем примере определение получилось по объёму меньше определяемого понятия, в результате чего из приведённого определения не совсем ясно, что такое геометрия, содержание понятия не раскрывается. Как видим, ошибка узкого определения противоположна ошибке широкого определения. Если определение не должно быть широким и не должно быть узким, то каким же тогда оно должно быть? Оно должно быть соразмерным, т. е. понятие и его определение должны быть равны друг другу. Вернёмся к определению: «Астрономия – это наука о небесных телах », – которое является соразмерным. В этом примере определяемое понятие «астрономия » и определение: «…наука о небесных телах » находятся в отношении равнозначности: астрономия – это именно наука о небесных телах, а наука о небесных телах – это только астрономия. Определение является соразмерным тогда, когда между его первой частью (определяемым понятием) и второй (определением) можно поставить знак « = ». Если же между первой и второй частью определения ставится знак « > » или « < », то оно является ошибочным – широким или узким соответственно. В данном случае мы видим проявление одного из основных законов логики – закона тождества. 3. В определении не должно быть круга , т. е. в определении нельзя употреблять понятия, которые являются определяемыми. Например, в определении: «Клеветник – это человек, который занимается клеветой », – присутствует круг , поскольку понятие «клеветник » определяется через понятие «клевета », т. е. фактически – через само себя. Если бы, услышав приведённое определение, мы спросили, что такое клевета, нам могли бы ответить: «Клевета – это то, чем занимается клеветник ». Присутствующий в определении круг (или тавтология, с греч. – повтор) приводит к тому, что содержание понятия не раскрывается, и определение является ошибочным. Однако наверняка найдутся люди, которые скажут, что из определения: «Клеветник – это человек, который занимается клеветой », – вполне понятно, и кто такой клеветник, и что такое клевета. Они могут так утверждать только потому, что им ранее было известно значение слов «клеветник » и «клевета ». Станет ли понятно, что такое экзистенциализм из следующего кругового определения: «Экзистенциализм – это философское направление XX в., в котором ставятся и всесторонне рассматриваются различные экзистенциальные вопросы и проблемы »? Узнаем ли мы, что такое синергетика, благодаря такому круговому определению: «Синергетика – это раздел современного естествознания, который изучает разнообразные синергетические явления и процессы »? 4. Определение не должно быть двусмысленным , т. е. в нём нельзя употреблять слова (термины) в переносном значении. Вспомним хорошо знакомое с детства определение: «Лев – это царь зверей ». В данном определении слово «царь » используется в переносном значении, но у него есть и прямое значение. Получается, что в определении употребляется одно слово, а возможных значений у него два, т. е. определение является двусмысленным (вновь нарушается логический закон тождества: одно слово, два значения: 1 & #8800; 2). Двусмысленность вполне уместна в качестве художественного приёма, но в определении она недопустима, поскольку содержание понятия в данном случае не раскрывается. 5. Определение не должно быть сложным и непонятным. Рассмотрим следующее определение: «Энтропия – это термодинамическая функция, характеризующая часть внутренней энергии замкнутой системы, которая не может быть преобразована в механическую работу ». Это определение взято не из научного доклада и не из докторской диссертации, а из учебника для студентов гуманитарных специальностей[2]. Данное определение не широкое и не узкое, в нём нет круга и двусмысленности, оно верно и с научной точки зрения. Это определение кажется безупречным с тем только исключением, что оно является сложным и непонятным для людей, которые не занимаются специально естественными науками, т. е. для большинства из нас. Определение должно быть понятным для того, кому оно адресовано, иначе при всей своей формальной правильности оно не будет раскрывать содержания понятия для своего адресата. Непонятные определения также называют некоммуникабельными , т. е. создающими преграды для общения между людьми. 6. Определение не должно быть только отрицательным. Например, определение: «Квадрат – это не треугольник », – является только отрицательным. Квадрат – это действительно не треугольник, но данное определение не раскрывает содержание понятия «квадрат », ведь, указав на то, чем не является объект, обозначенный определяемым понятием, мы не сказали, чем же он является (окружность, трапеция, пятиугольник – это тоже не квадраты). Определение может быть отрицательным в том случае, когда оно дополнено положительной частью. Например, определение: «Квадрат – это не треугольник, а прямоугольник, у которого все стороны равны », – правильное.
Проверьте себя:
1. Что такое определение понятия? 2. Чем отличаются явные определения от неявных? Придумайте по три примера явных и неявных определений. 3. Что такое реальные и номинальные определения? Как вы думаете, почему любое реальное определение можно свести к номинальному, и наоборот? 4. Что представляет собой классический способ определения понятия? Дайте определения каким-нибудь трём понятиям, пользуясь классическим способом. 5. Каковы основные правила определения понятия? Какие ошибки возникают при их нарушении? Приведите, подобрав самостоятельно, по три примера для каждой ошибки в определении понятия. 6. Найдите ошибки в приведённых ниже примерах определений: 1) Сутки – это отрезок времени, в течение которого Земля делает полный оборот вокруг своей оси. 2) Жанр – это устойчивая форма какого-либо произведения искусства. 3) Собака – это друг человека. 4) Творческое мышление – это мышление, которое обеспечивает решение творческих задач. 5) Революция – это крупное историческое событие, в результате которого в обществе меняется политическая власть.
Операция деления понятия
Деление понятия – это логическая операция, которая раскрывает его объём. Деление понятия состоит из трёх частей: делимое понятие, результаты деления, основание деления (признак, по которому производится деление). Например, в следующем делении: «Люди бывают мужчинами и женщинами », – или, что то же самое: «Люди делятся на мужчин и женщин », – делимым является понятие «люди », результаты деления – это понятия «мужчины » и «женщины », а основание данного деления – пол, т. к. люди в нём разделены по половому признаку. В зависимости от основания деление может быть различным. Например: «Люди бывают высокими, низкими и среднего роста (основание деления – рост)», «Люди бывают монголоидами, европеоидами и негроидами (основание деления – раса)», «Люди бывают учителями, врачами, инженерами и т. д. (основание деления – профессия)». Иногда понятие делится дихотомически (с греч. – пополам) по типу: «A и не A». Например: «Люди бывают спортсменами и не спортсменами ». Дихотомическое деление всегда правильное, т. е. в нём автоматически исключаются все возможные в делении ошибки, о которых речь пойдёт ниже. Мы хорошо знаем, зачем нам нужна операция определения понятия: знакомство с новым предметом начинается с его определения. Теперь ответим на вопрос, какую роль в мышлении и языке выполняет операция деления понятия. Изучая разные науки, вы заметили, что ни одна из них не обходится без различных классификаций: разделений каких-то областей действительности на группы, части, виды и т. п. (классификация растений в ботанике, животных – в зоологии, химических элементов – в химии и т. д.). Однако любая классификация – это не что иное, как логическая операция деления понятия. Классификации могут быть как обширными, подробными, научными, так и простыми, обыденными, повседневными. Когда мы говорим: «Люди делятся на мужчин и женщин » или «Учебные заведения бывают начальными, средними и высшими », – то создаём пусть маленькую и простую, но классификацию. Итак, логическая операция деления понятия лежит в основе любой классификации, без которой не обходится ни научное, ни повседневное мышление. Существует несколько логических правил деления. Нарушение хотя бы одного из них приводит к тому, что объём понятия не раскрывается и деление не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении: 1. Деление должно проводиться по одному основанию , т. е. при делении понятия следует придерживаться только одного выбранного признака. Например, в делении: «Люди бывают мужчинами, женщинами и учителями », – используются два разных основания: пол и профессия, что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания. В делении с подменой основания могут использоваться не только два разных основания, как в приведённом выше примере, но и больше. Например, в делении: «Люди бывают мужчинами, женщинами, китайцами и блондинами », – использованы три разных основания: пол, национальность и цвет волос, что, конечно же, тоже является ошибкой. 2. Деление должно быть полным , т. е. надо перечислить все возможные результаты деления: суммарный объём всех результатов деления должен быть равен объёму исходного делимого понятия. Например, деление: «Учебные заведения бывают начальными и средними », – является неполным , т. к. не указан ещё один результат деления – «высшие учебные заведения ». Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления. В этом случае можно употреблять следующие понятия: и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя не перечисленные результаты деления. Например: «Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей ». 3. Результаты деления не должны пересекаться , т. е. понятия, представляющие собой результаты деления, должны быть несовместимыми, их объёмы не должны иметь общих элементов (на схеме Эйлера круги, обозначающие результаты деления, не должны соприкасаться). Например, в делении: «Страны мира делятся на северные, южные, восточные и западные », допущена ошибка – пересечение результатов деления. На первый взгляд, приведённое деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку, надо рассуждать так. Возьмём какую-нибудь страну, например Канаду, и ответим на вопрос, является ли она северной. Конечно, является, т. к. расположена в северном полушарии Земли. А является ли Канада западной страной? Да, потому что она расположена в западном полушарии. Таким образом, получается, что Канада – одновременно и северная, и западная страна, т. е. она является общим элементом объёмов понятий «северные страны » (С) и «западные страны » (З), а значит, эти понятия пересекаются. То же самое можно сказать и относительно понятий «южные страны » (Ю) и «восточные страны » (В). На схеме Эйлера результаты деления из нашего примера будут располагаться так (рис. 15):
Вспомним, каждая классификация построена таким образом, что любой элемент, попадающий в одну её группу (часть, вид), ни в коем случае не попадает в другие. Это и есть следствие непересечения результатов деления (их взаимоисключения). 4. Деление должно быть последовательным , т. е. не допускающим пропусков и скачков. Рассмотрим следующее деление: «Леса бывают хвойными, лиственными, смешанными и сосновыми ». Явно лишним здесь выглядит понятие «сосновые леса », в силу чего допущенная в делении ошибка напоминает подмену основания (см. первое правило). Однако основание в данном случае не менялось: деление было проведено по одному и тому же основанию – тип древесных листьев. Подмена основания присутствует в таком, например, делении: «Леса бывают хвойными, лиственными, смешанными, подмосковными и таёжными ». Деление проведено по двум разным основаниям: тип древесных листьев и географическое местонахождение леса. Вернёмся к нашему первому примеру. Правильно было бы разделить леса на хвойные, лиственные и смешанные, а потом произвести второе деление – разделить хвойные леса на сосновые и еловые. Таким образом, надо было совершить два последовательных деления, а в приведённом примере второе деление пропущено, через него как бы перескочили, в результате чего два деления смешались в одно. Такая ошибка называется скачком в делении. Ещё раз отметим, что скачок в делении не следует путать с подменой основания. Например, в делении: «Учебные заведения бывают начальными, средними, высшими и университетами », – присутствует скачок, а в делении: «Учебные заведения бывают начальными, средними, высшими и коммерческими », – допущена подмена основания.
Проверьте себя:
1. Что такое деление понятия? 2. Какова структура деления? Что такое основание деления? 3. Какое деление называется дихотомическим? Попробуйте отметить достоинства и недостатки дихотомического деления. 4. Какую роль в научном и повседневном мышлении играет логическая операция деления понятия? 5. Каковы основные логические правила деления понятия? Какие ошибки возникают при их нарушении? Придумайте по три примера для каждой ошибки в делении понятия. 6. Почему дихотомическое деление понятия всегда безошибочно? Каким образом оно исключает все возможные в делении ошибки? 7. Найдите ошибки в приведённых ниже примерах деления: 1) Транспорт бывает наземным, подземным, водным, воздушным, общественным и личным. 2) По темпераменту люди делятся на сангвиников, меланхоликов, флегматиков и холериков. 3) Геометрические фигуры делятся на плоские, объёмные, треугольники и квадраты. 4) Отбор в живой природе бывает искусственным или естественным. 5) Художественные романы бывают приключенческими, детективными, фантастическими, историческими, любовными и другими.
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 790; Нарушение авторского права страницы