![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
РАСЧЕТ ГИБКОГО СЖАТО-ИЗОГНУТОГО СТЕРЖНЯ (ЗАДАЧА № 36)
Основные определения В разд. 5.2 рассматривался расчет жестких стержней, подверженных внецентренному растяжению-сжатию. Расчет этих стержней велся по недеформированному состоянию, т. е. при определении внутренних усилий не учитывалось искривление оси стержня. Для гибких стержней необходимо учитывать влияние деформаций изгиба на внутренние усилия. Такой расчет носит название расчета по деформированному состоянию. При расчете по деформированному состоянию изгибающий момент вызывается не только поперечной нагрузкой, но и сжимающей силой. Будем рассматривать стержень, подверженный действию поперечной, примерно симметричной относительно середины пролета нагрузки, действующей в плоскости симметрии поперечного сечения, и сжимающей силы F. В этом случае наибольший прогиб имеет место по середине пролета. Максимальное нормальное напряжение в опасном сечении стержня определяется по формуле
где В формуле (6.10) два первых слагаемых определяют наибольшее напряжение в стержне при расчете по недеформированному состоянию, третье слагаемое показывает вклад сжимающей силы в напряжения от изгиба. Видно, что зависимость напряжения от сжимающей нагрузки нелинейная, поэтому проверку прочности стержня нельзя производить расчетом по допускаемым напряжениям. Проверку прочности гибких сжато-изогнутых стержней необходимо вести расчетом по предельному состоянию, обеспечивая запас прочности не по напряжениям, а по нагрузке. В этом случае условие прочности имеет вид
где n – нормируемый коэффициент запаса прочности материала. Проверка жесткости гибкого сжато-изогнутого стержня расчетом по деформированному состоянию производится по формуле
В формуле (6.12) Кроме проверки прочности и жесткости по условиям (6.11), (6.12), необходимо проверить условие устойчивости (6.6) гибкого стержня и обеспечить невозможность потери устойчивости стержня в плоскости наименьшей жесткости, обычно перпендикулярной плоскости действия поперечной нагрузки. Пример расчета гибкого сжато-изогнутого стержня
Условие задачи Стержень, показанный на рис. 6.6, сжимается силой F = 300 кН и изгибается поперечной нагрузкой q = 5 кН/м. Сечение стержня состоит из двух швеллеров, выполненных из стали С235 с Решение Построим эпюру изгибающих моментов от поперечной нагрузки (рис. 6.7, а) и подберем сечение расчетом по недеформированному состоянию без учета продольной силы.
Выберем из сортамента прокатной стали швеллер № 27, у которого
Увеличим размер швеллера. Для швеллера № 30 с такими характеристиками:
Проверим прочность по деформированному состоянию. Найдем максимальный прогиб в середине пролета, перемножая эпюры М от поперечной нагрузки и М1 от единичной силы (рис. 6.7, б):
Найдем критическую силу по формуле Эйлера (6.2). Момент инерции принимаем равным .
Принимая коэффициент запаса прочности n = 1, 5, проверим прочность по условию прочности по деформированному состоянию (6.11).
Поскольку условие прочности по деформированному состоянию для швеллера № 30 не выполняется, проверим прочность по условию (6.11) для швеллера № 33, у которого
Критическая сила
Тогда условие прочности (6.11) выполняется:
Проверим жесткость стержня расчетом по деформированному состоянию по формуле (6.12). Примем
Осталось удовлетворить третьему условию – условию устойчивости в плоскости наименьшей жесткости. Найдем минимальный радиус инерции сечения из двух швеллеров:
Если швеллеры расположены вплотную друг к другу, то и
Гибкость стержней больше, чем 200, не допускается. Для сечения из двух швеллеров можно уменьшить гибкость, не увеличивая размер швеллера. Для этого следует раздвинуть швеллеры. Величину а нужно подобрать так, чтобы гибкость стержня была меньше 200 и условие устойчивости (6.6) выполнялось. В рассматриваемом примере такой величиной будет
Этой гибкости соответствует
Таким образом, всем условиям (прочности, жесткости и устойчивости) удовлетворяет сечение из двух швеллеров № 33, расстояние между стенками которых равно 5, 60 см.
Популярное: |
Последнее изменение этой страницы: 2016-04-11; Просмотров: 921; Нарушение авторского права страницы