Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
РАСЧЕТ ГИБКОГО СЖАТО-ИЗОГНУТОГО СТЕРЖНЯ (ЗАДАЧА № 36)
Основные определения В разд. 5.2 рассматривался расчет жестких стержней, подверженных внецентренному растяжению-сжатию. Расчет этих стержней велся по недеформированному состоянию, т. е. при определении внутренних усилий не учитывалось искривление оси стержня. Для гибких стержней необходимо учитывать влияние деформаций изгиба на внутренние усилия. Такой расчет носит название расчета по деформированному состоянию. При расчете по деформированному состоянию изгибающий момент вызывается не только поперечной нагрузкой, но и сжимающей силой. Будем рассматривать стержень, подверженный действию поперечной, примерно симметричной относительно середины пролета нагрузки, действующей в плоскости симметрии поперечного сечения, и сжимающей силы F. В этом случае наибольший прогиб имеет место по середине пролета. Максимальное нормальное напряжение в опасном сечении стержня определяется по формуле , (6.10) где – изгибающий момент в опасном сечении, вызванный действием только поперечной нагрузки (при отсутствии сжимающей силы); – прогиб по середине пролета, вызванный только поперечной нагрузкой; – значение критической нагрузки, вычисляемой по формуле Эйлера при изгибе стержня в плоскости действия поперечной нагрузки; – момент сопротивления сечения стержня относительно той оси, которая будет нейтральной при изгибе от поперечной нагрузки. В формуле (6.10) два первых слагаемых определяют наибольшее напряжение в стержне при расчете по недеформированному состоянию, третье слагаемое показывает вклад сжимающей силы в напряжения от изгиба. Видно, что зависимость напряжения от сжимающей нагрузки нелинейная, поэтому проверку прочности стержня нельзя производить расчетом по допускаемым напряжениям. Проверку прочности гибких сжато-изогнутых стержней необходимо вести расчетом по предельному состоянию, обеспечивая запас прочности не по напряжениям, а по нагрузке. В этом случае условие прочности имеет вид , (6.11) где n – нормируемый коэффициент запаса прочности материала. Проверка жесткости гибкого сжато-изогнутого стержня расчетом по деформированному состоянию производится по формуле . (6.12) В формуле (6.12) – коэффициент запаса по прогибам, обычно принимаемый равным коэффициенту запаса прочности . Кроме проверки прочности и жесткости по условиям (6.11), (6.12), необходимо проверить условие устойчивости (6.6) гибкого стержня и обеспечить невозможность потери устойчивости стержня в плоскости наименьшей жесткости, обычно перпендикулярной плоскости действия поперечной нагрузки. Пример расчета гибкого сжато-изогнутого стержня
Условие задачи Стержень, показанный на рис. 6.6, сжимается силой F = 300 кН и изгибается поперечной нагрузкой q = 5 кН/м. Сечение стержня состоит из двух швеллеров, выполненных из стали С235 с . Требуется подобрать номер швеллера так, чтобы удовлетворялись условия прочности и жесткости по деформированному состоянию, а также условие устойчивости в плоскости наименьшей жесткости. Допускаемый прогиб примем равным . Решение Построим эпюру изгибающих моментов от поперечной нагрузки (рис. 6.7, а) и подберем сечение расчетом по недеформированному состоянию без учета продольной силы. , откуда . Выберем из сортамента прокатной стали швеллер № 27, у которого , , и проверим прочность с учетом продольной силы: .
Увеличим размер швеллера. Для швеллера № 30 с такими характеристиками: , , , – условие прочности по недеформированному состоянию выполняется: . Проверим прочность по деформированному состоянию. Найдем максимальный прогиб в середине пролета, перемножая эпюры М от поперечной нагрузки и М1 от единичной силы (рис. 6.7, б): . Найдем критическую силу по формуле Эйлера (6.2). Момент инерции принимаем равным , что соответствует изгибу в плоскости действия поперечной нагрузки (плоскости максимальной жесткости) . . Принимая коэффициент запаса прочности n = 1, 5, проверим прочность по условию прочности по деформированному состоянию (6.11). . Поскольку условие прочности по деформированному состоянию для швеллера № 30 не выполняется, проверим прочность по условию (6.11) для швеллера № 33, у которого , , , , . Прогиб . Критическая сила . Тогда условие прочности (6.11) выполняется: . Проверим жесткость стержня расчетом по деформированному состоянию по формуле (6.12). Примем и допускаемый прогиб . Тогда условие жесткости выполняется:
. Осталось удовлетворить третьему условию – условию устойчивости в плоскости наименьшей жесткости. Найдем минимальный радиус инерции сечения из двух швеллеров: . Если швеллеры расположены вплотную друг к другу, то . Тогда и . Гибкость стержней больше, чем 200, не допускается. Для сечения из двух швеллеров можно уменьшить гибкость, не увеличивая размер швеллера. Для этого следует раздвинуть швеллеры. Величину а нужно подобрать так, чтобы гибкость стержня была меньше 200 и условие устойчивости (6.6) выполнялось. В рассматриваемом примере такой величиной будет , которой соответствует расстояние между стенками швеллеров . Для стержня с таким сечением ; . Этой гибкости соответствует , и условие устойчивости выполняется: . Таким образом, всем условиям (прочности, жесткости и устойчивости) удовлетворяет сечение из двух швеллеров № 33, расстояние между стенками которых равно 5, 60 см.
Популярное: |
Последнее изменение этой страницы: 2016-04-11; Просмотров: 921; Нарушение авторского права страницы