![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Расчет коленчатого вала на изгиб с кручением
(задача № 33) Рекомендуемая литература Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 19 (§ 19.1–19.6). Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 15. Феодосьев В. И.. Сопротивление материалов. М.: Наука, 1970. Гл. ХIII. Иванов М. Н. Детали машин. М.: Высшая школа, 1998. Гл. 15. Основные определения Коленчатый вал является плоской рамой, испытывающей действие пространственных циклических нагрузок, в которой возможно усталостное разрушение, поэтому, кроме расчета на статические нагрузки, требуется учет влияния на напряжения динамического действия нагрузок. Известно, что под действием длительных, циклически меняющихся нагрузок материалы конструкций обнаруживают значительное понижение прочности. Это явление носит название усталости материала. Способность материала сопротивляться усталостному разрушению называют выносливостью. Важной характеристикой материала является предел выносливости, определяемый экспериментально. Следует отметить, что расчет на циклические нагрузки (усталостную прочность) носит эмпирический характер, требует наличия большого количества экспериментальных данных, обычно приводимых в справочниках в виде таблиц и графиков. Используемый в рассматриваемой задаче расчет на усталостную прочность является достаточно приближенным, так как многие необходимые для расчета величины эмпирических коэффициентов принимаются условно. Более точный расчет коленчатых валов рассматривается в специальных курсах. Один из способов расчета на усталостную прочность сводится к определению действительного коэффициента запаса усталостной прочности
Для " балочного" напряженного состояния, которое имеет место в опасных точках коленчатого вала, коэффициент запаса усталостной прочности находится по формуле Гафа и Полларда
где
В формулах (5.53), (5.54) · · · Эти коэффициенты в инженерных расчетах определяют по специальным справочникам. При решении рассматриваемой задачи студенты условно принимают значения этих коэффициентов по данным, приведенным в [4].
Пример расчета коленчатого вала Условие задачи [13] Идеализированная расчетная схема коленчатого вала представлена на рис. 5.32. Левый и правый концы вала имеют шарнирное закрепление в вертикальной и горизонтальной плоскостях, перпендикулярных оси стержня. Правый конец, кроме того, жестко закреплен от продольного перемещения и поворота сечения вокруг оси стержня. Требуется подобрать радиус круглого сечения шатунной шейки (горизонтальная участок вала длиной
Решение Определение внутренних усилий. Прежде всего надо найти внутренние усилия в сечениях вала, т. е. построить эпюры усилий. Для этого сначала определим опорные реакции. В заданных закреплениях на концах вала возникает шесть опорных реакций, показанных на рис. 5.33. Составим шесть уравнений статики:
Из них получим
При вычислении внутренних усилий используем местные системы координатных осей для каждого участка стержня. Направление оси
Эпюры внутренних усилий, построенные по принятым в условии задачи исходным данным, показаны на рис. 5.34. Эпюры изгибающих моментов откладываем со стороны растянутых волокон. Обратим внимание на соблюдение дифференциальных зависимостей между Предварительный подбор сечений шатунной шейки и кривошипа. После построения эпюр можно подобрать размеры поперечных сечений. Предварительный подбор сечений производим из условия статической прочности без учета напряжений от продольной и поперечных сил, а для прямоугольного сечения, кроме того, не учитываем напряжения от крутящего момента. При предварительном подборе сечения допускаемое напряжение примем пониженным –
В сечении 3 Видно, что опасным будет сечение 4(5), в котором действует суммарный момент
где
Из условия Теперь предварительно подберем размеры прямоугольного сечения кривошипа из условия прочности в угловых точках сечения, где действуют только максимальные нормальные напряжения от изгиба, а касательные напряжения равны нулю. Условие прочности в этих точках имеет вид (5.50). Прежде чем находить размеры сечения, подумаем, как рационально расположить сечение. Поскольку в рассматриваемом примере
Чтобы выбрать опасное сечение, надо сравнить значение числителя в условии прочности в потенциально опасных сечениях правого[14] кривошипа (сечения 7, 8 на рис. 5.33). При
Отсюда
Построение эпюр напряжений. Построим эпюры напряжений в опасных сечениях с тем, чтобы найти положение дополнительных опасных точек и завершить в дальнейшем окончательную проверку статической прочности. Чтобы найти точное положение опасных точек в круглом сечении шатунной шейки, определим направление суммарного изгибающего момента. Изобразим пары Построим эпюры распределения напряжений в прямоугольном сечении кривошипа (рис. 5.36). При определении максимальных нормальных напряжений, вызванных продольной силой и изгибающими моментами, использованы формулы (5.33), (5.44) и (5.45). Максимальные касательные напряжения от крутящего момента и поперечных сил найдены по формулам (5.46)–(5.49). Знаки нормальных напряжений соответствуют знакам усилий
Проверка усталостной прочности шатунной шейки. Нормальные напряжения от изгиба изменяются по симметричному циклу, а нормальные напряжения от продольной силы постоянны, поэтому характеристики цикла, по которому меняются полные нормальные напряжения,
Касательные напряжения от кручения изменяются по пульсирующему (отнулевому) циклу с такими характеристиками:
Найдем эти характеристики, считая радиус шатунной шейки равным 3, 1 см. Тогда
и
Сосчитаем коэффициенты запаса по формулам
Тогда
то есть условие усталостной прочности шатунной шейки выполняется. Проверка статической прочности шатунной шейки и кривошипа. Проверка статической прочности производится на кратковременное двукратное увеличение нагрузки с учетом напряжений от всех внутренних усилий. Допускаемое напряжение при этом принимается равным 190 МПа. По построенным ранее эпюрам напряжений выбираем опасные точки. Для круглого сечения шатунной шейки опасными могут быть точки 1, 1¢ (см. рис. 5.35). Для пластичного материала опасной является только точка 1, в которой нормальные напряжения от изгиба и продольной силы имеют один знак (в рассматриваемом примере знак " минус" ). В этой точке, кроме того, действуют максимальные касательные напряжения, вызванные кручением. Таким образом, точка 1 находится в " балочном" напряженном состоянии. Проверку прочности в этой точке необходимо осуществлять по теориям прочности, соответствующим материалу. При подборе сечения в условии прочности точки 1 не учитывалась продольная сила. Теперь учтем ее влияние. В соответствии с условием окончательной проверки прочности увеличим найденные ранее напряжения в 2 раза. Сложим нормальные напряжения от изгиба и продольной силы в точке 1:
Касательные напряжения в точке 1
Таким образом, условие прочности в точке 1 шатунной шейки выполняется. то есть найденный радиус поперечного сечения Для прямоугольного сечения кривошипа опасными могут быть три группы точек, показанных на рис. 5.36. В рассматриваемом примере будем проверять прочность в точках 1 (здесь нормальные напряжения от · В угловой точке 1 действуют максимальные по модулю нормальные напряжения, равные сумме напряжений от
выполняется. · В точке 2 по середине длинной стороны прямоугольника действуют и нормальные
и касательные напряжения
Точка находится в " балочном" напряженном состоянии и проверку прочности производим по третьей теории прочности (5.31):
· Точка 3 по середине короткой стороны прямоугольника тоже находится в " балочном" напряженном состоянии. В ней действуют нормальные и касательные напряжения:
Условие прочности в этой точке по третьей теории прочности
Поскольку условия прочности во всех опасных точках выполняются, окончательные размеры поперечного сечения кривошипа
УСТОЙЧИВОСТЬ Рекомендуемая литература Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 15. Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 12 (§ 49–51). Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 13. Основные понятия и формулы При расчете простейших стержневых систем мы научились удовлетворять двум важным требованиям, предъявляемым к конструкциям: требованиям прочности и жесткости стержневой системы. Любая конструкция должна удовлетворять еще одному важному условию, а именно условию устойчивости. Об условии устойчивости сжатых стержней конструкции и пойдет речь в данном разделе.
Положение равновесия стержня может быть устойчивым, неустойчивым и безразличным. Чтобы на опыте выявить, каким является равновесие стержня, надо вывести его из положения равновесия, приложив к стержню кратковременную малую возмущающую нагрузку, и посмотреть, как будет вести себя стержень после снятия возмущения. Рассмотрим центрально-сжатый стержень (рис. 6.1, а). Приложим к нему возмущающую нагрузку (сила f на рис. 6.1, б). При действии возмущающей нагрузки рассматриваемый стержень изогнется. Если после снятия возмущения стержень возвращается в исходное прямолинейное состояние, то это состояние называется устойчивым. Если же после удаления возмущающей нагрузки стержень остается в изогнутом состоянии, то первоначальная прямолинейная форма равновесия является неустойчивой. Нагрузка, при которой первоначальная форма равновесия становится неустойчивой, называется критической. Рис. 6.1, в, г поясняют данное определение критической силы. Если нагрузка меньше критической силы (см. рис. 6.1, в), то после прекращения действия возмущающей нагрузки стержень остается прямолинейным. Если же нагрузка достигла критической величины или стала больше (см. рис. 6.1, г), то стержень после снятия возмущения остается в изогнутом состоянии. Поскольку на практике всегда бывают какие-то возмущения, то при достижении силой критического значения сжатый стержень начинает изгибаться. Описанное явление носит название потери устойчивости центрально-сжатого стержня. Условие, обеспечивающее определенный запас против потери устойчивости стержней конструкции, называется условием устойчивости. Студент должен: ·* научиться находить величину критической нагрузки; ·* уметь обеспечить выполнение условий устойчивости и прочности, то есть вычислять допускаемую нагрузку или подбирать размеры поперечных сечений стержней так, чтобы была невозможна потеря устойчивости и прочности; ·* уметь определять нормируемый или действительный коэффициенты запаса устойчивости. Нормируемый коэффициент запаса устойчивости показывает во сколько раз критическая нагрузка превышает допускаемую, найденную из условия устойчивости. Величина нормируемого коэффициента запаса устойчивости не является постоянной величиной, а зависит от размеров стержня. Действительный коэффициент запаса устойчивости равен отношению критической нагрузки к действующей на стержень сжимающей силе. Определение критической нагрузки. Перед отысканием критической силы надо найти величину гибкости стержня
где l – длина стержня; В зависимости от величины · если
· если
· если
Величины
Условия устойчивости и прочности. Условием устойчивости центрально-сжатого стержня является условие
где Из условия устойчивости (6.6), если известны размеры сечения, можно найти значение допускаемой нагрузки
либо, если задана нагрузка F, определить площадь сечения А стержня. Однако найти сразу площадь А из условия устойчивости (6.6) нельзя, так как в этом условии коэффициент Для центрально-сжатых стержней малой и средней гибкости более опасным, чем условие устойчивости, может оказаться условие прочности, которое записывается в таком виде:
Здесь Определение коэффициента запаса устойчивости. Нормируемый коэффициент запаса устойчивости определяется по формуле
где допускаемая нагрузка находится из условия устойчивости (6.7). Обычно нормируемый коэффициент запаса устойчивости больше, чем нормируемый коэффициент запаса прочности, и для пластичных материалов находится в пределах Действительный коэффициент запаса устойчивости
где F – действующая на стержень сжимающая сила. Действительный коэффициент запаса устойчивости не должен быть меньше нормируемого, в оптимальном случае (для стержней с экономичным расходом материала) – равен нормируемому.
Примеры решения задач Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1178; Нарушение авторского права страницы