![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Определение грузоподъемности жесткого стержня моносимметричного сечения при внецентренном
Растяжении-сжатии (задача № 29) Условие задачи Жесткий стержень загружен двумя силами – растягивающей и сжимающей (рис. 5.21). Стержень выполнен из хрупкого материала с характеристиками 1) найти допускаемую нагрузку на стержень из условия прочности, если отношение сжимающей и растягивающей сил 2) построить ядро сечения.
Решение Положение главных центральных осей инерции и моменты инерции относительно этих осей заданного сечения найдены ранее в п. 5.2.1 (пример 1). Найдем внутренние усилия в произвольном сечении стержня: Для определения положения опасных точек построим нейтральную линию. Уравнение нейтральной линии (5.2) в данной задаче имеет вид
или
Отсюда найдем отрезки, отсекаемые нейтральной линией на осях и, если
Нейтральная линия показана на рис. 5.22. Проведем касательные к контуру сечения, параллельные нейтральной линии. Опасными являются точки 1 и 1¢ (см. рис. 5.22), наиболее отдаленные от нейтральной линии. Для хрупкого материала более опасной является точка с максимальными растягивающими напряжениями, т. е. точка 1. Найдем напряжение в этой точке, подставляя в формулу (5.1) координаты точки 1: Условие прочности в точке 1 Отсюда можно найти допускаемое значение нагрузки[8]. В заключение необходимо убедиться в том, что и в точке 1¢, которая в данном примере дальше удалена от нейтральной оси, чем точка 1, и в которой действуют сжимающие напряжения, условие прочности тоже выполняется, т. е. Теперь построим ядро сечения. Поместим полюсы во внешних угловых точках сечения. Учитывая симметрию сечения, достаточно расположить полюсы в трех точках: 1, 2 и 3 (см. рис. 5.22). Подставляя в формулы (5.12) координаты полюсов, найдем отрезки, отсекаемые нейтральными линиями на осях
Нейтральная линия 1–1, соответствующая полюсу в точке 1, показана на рис. 5.22. Аналогично строим нейтральные линии 2–2 и 3–3, соответствующие полюсам 2 и 3. При построении нейтральной линии следите за тем, чтобы она проходила в квадранте, противоположном тому, в котором находится полюс. Область, заштрихованная на рис. 5.22, является ядром сечения. Для контроля на рис. 5.22 показан эллипс инерции. Ядро сечения должно находиться внутри эллипса инерции, нигде не пересекая его. Определение грузоподъемности внецентренно сжатых жестких стержней несимметричных сечений (задачи № 30, 31) Условие задачи Стержень несимметричного сечения сжимается силой, приложенной в точке А (рис. 5.23). Поперечное сечение имеет форму и размеры, показанные на рис. 5.19. Материал стержня – хрупкий. Требуется: 1) найти допускаемую нагрузку, удовлетворяющую условию прочности; 2) построить ядро сечения. Решение Прежде всего надо определить моменты и радиусы инерции поперечного сечения относительно главных центральных осей. Эта часть решения задачи приведена в примере 2 п. 5.2.1. На рис. 5.23 показаны главные центральные оси инерции сечения
Найденные координаты рекомендуем проверить, измерив эти координаты на рисунке сечения, выполненном в большом масштабе[9]. Для определения положения опасных точек построим нейтральную линию, используя формулы (5.12). Радиусы инерции Отложим эти отрезки вдоль главных осей и проведем через полученные точки нейтральную линию Подставим в условие прочности координаты опасной точки 1 в главных осях, вычислив их по формулам (5.19) или измерив на рисунке, выполненном в масштабе,
Для найденного значения допускаемой нагрузки необходимо убедиться, что условие прочности выполняется и в точке 3, которая дальше удалена от нейтральной линии и в которой действует сжимающее напряжение. Для определения напряжения в точке 3 подставим в формулу (5.9) координаты этой точки
Это напряжение не должно превосходить В заключение построим ядро сечения. Поместим полюсы во внешние угловые точки сечения, т. е. в точки 1, 2, 3, 4, 5 (см. рис. 5.24). Поясним, как получена точка 4, находящаяся на контуре квадранта круга. Отсекая внутреннюю угловую точку
.
Поскольку Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1568; Нарушение авторского права страницы