Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация помехоустойчивых кодов



В настоящее время темпы развития телекоммуникационных систем стали предпосылкой для появления принципиально новых способов кодирования сообщений. Причем одной из задач кодирования стало не только достоверная передача, но и быстрая обработка данных. Несмотря на рост мощности вычислительной техники, актуальным остается вопрос построения простых алгоритмов коррекции ошибок. Одним из малоизученных направлений в этой области можно считать использование кодов с иррациональным основанием.

Работа подавляющего числа современных систем связи основана на передаче сообщений в цифровом виде. Сбой при приеме любого элемента цифровых данных способен вызвать значительное искажение всего сообщения в целом, что, в свою очередь, может привести к полной потере информации, содержащейся в нем. В настоящее время по каналам связи передаются данные со столь высокими требованиями к достоверности передаваемой информации, что удовлетворить эти требования традиционным методами - совершенствованием антенно-фидерных устройств, увеличением излучаемой мощности, снижением собственного шума приемника - оказывается экономически невыгодным или просто невозможным.

Высокоэффективным средством решения данной проблемы является применение помехоустойчивого кодирования, основанного на введении искусственной избыточности в передаваемое сообщение. Теория и техника помехоустойчивого кодирования прошли несколько этапов в своем развитии. Изначально это было просто эмпирическое использование простейших кодов с повторением, с постоянным весом, с одной проверкой на четность и т.д. В дальнейшем теория помехоустойчивого кодирования прошла довольно длинный путь развития, в процессе которого для ее создания использовались основы математической теории – ответвления высшей алгебры и теории чисел с приложением к реальным системам связи.

Теория кодирования возникла в конце 40-х годов с появлением работ Голея, Хэмминга и Шеннона. Выдающиеся два ученые Голей и Хэмминг заложили основу алгебраическим методам кодирования, которые используются и по сей день, а Шеннон предложил и исследовал понятие случайного кодирования. Отметим, что в современных информационных системах важнейшей задачей является обеспечение информационной безопасности, связанной с методами криптографии и кодирования, теоретические основы которой заложил Шеннон в своих трудах.[3]

Появление работ Шеннона вызвало настоящую эйфорию среди ученых и инженеров, казалось, что практическое решение этих задач будет так же просто и понятно, как Шеннон сделал это математически. Однако эйфория быстро прошла, так как практического решения в прямой постановке Шеннона найти так не удалось. В то же время, сделанные Шенноном постановки задачи и доказательство фундаментальных теорем теории информации дали толчок для поиска решения задач с использованием детерминированных (неслучайных) сигналов и алгебраических методов помехоустойчивого кодирования защиты от помех и шифрования для обеспечения секретности информации.

В 50-е-70-е годы было разработано большое количество алгебраических кодов с исправлением ошибок, среди которых наиболее востребованными стали коды Боуза-Чоудхури-Хоквингема (БЧХ), Рида-Соломона (РС), Рида-Малера, Адамара, Юстенсена, Гоппы, циклические коды, сверточные коды с разными алгоритмами декодирования (последовательное декодирование, алгоритм Витерби), арифметические коды.

Однако на практике применяется относительно небольшая группа алгебраических помехоустойчивых кодов: БЧХ, Рида-Соломона и сверхточные коды. Наиболее широко применяются циклические коды с обнаружением ошибок в стандартных протоколах HDLC, Х.25/2 (LAP-B, LAP-M). Коды Рида-Соломона с исправлением ошибок находят применение в каналах радиосвязи. В каналах спутниковой связи, характеризующихся независимым характером ошибок, широко применяются сверхточные коды.

Следует отметить тот факт, что хотя существующие на данный момент системы передачи данных отвечают всем основным стандартам и требованиям, они все же не являются совершенными. Причин тому влияние помех в канале связи. Одним из средств решения подобных несоответствий в системах передачи цифровой информации, является применение помехоустойчивых кодов, лежащих в основе устройств кодирования/декодирования.

Помехоустойчивое кодирование передаваемой информации позволяет в приемной части системы обнаруживать и исправлять ошибки. Коды, применяемые при помехоустойчивом кодировании, называются корректирующими кодами. Как правило, корректирующий код может исправлять меньше ошибок, чем обнаруживать. Число ошибок, которые корректирующий код может исправить в определенном интервале последовательности двоичных символов, например, в одной кодовой комбинации, называется исправляющей способностью кода.

Физическая среда, по которой передаются данные, не может быть абсолютно надёжной. Более того, уровень шума бывает очень высоким, например, в беспроводных системах связи и телефонных системах. Ошибки при передаче — это реальность, которую надо обязательно учитывать.[10]

В разных средах характер помех разный. Ошибки могут быть одиночные, а могут возникать группами, сразу по несколько. В результате помех могут исчезать биты или наоборот — появляться лишние.

Основной характеристикой интенсивности помех в канале является параметр шума — p. Это число от 0 до 1, равное вероятности инвертирования бита, при условии что, он был передан по каналу и получен на другом конце.

Следующий параметр — p2. Это вероятность того же события, но при условии, что предыдущий бит также был инвертирован.

Этими двумя параметрами вполне можно ограничиться при построении теории. Но, в принципе, можно было бы учитывать аналогичные вероятности для исчезновения бита, а также использовать полную информацию о пространственной корреляции ошибок, — то есть корреляции соседних ошибок, разделённых одним, двумя или более битами.

У групповых ошибок есть свои плюсы и минусы. Плюсы заключаются в следующем. Пусть данные передаются блоками по 1000 бит, а уровень ошибки 0, 001 на бит. Если ошибки изолированные и независимые, то 63% блоков будут содержать ошибки. Если же они возникают группами по 100 сразу, то ошибки будут содержать 1% блоков.

Зато, если ошибки не группируются, то в каждом кадре они невелики, и есть возможность их исправить. Групповые ошибки портят кадр безвозвратно. Требуется его повторная пересылка, но в некоторых системах это в принципе невозможно, — например, в телефонных системах, использующие цифровое кодирование, возникает эффект пропадания слов/слогов.

Для надёжной передачи кодов было предложено два основных метода.

Первый — добавить в передаваемый блок данных нескольких «лишних» бит так, чтобы, анализируя полученный блок, можно было бы сказать, есть в переданном блоке ошибки или нет. Это, так называемые, коды с обнаружением ошибок.

Второй — внести избыточность настолько, чтобы, анализируя полученные данные, можно не только замечать ошибки, но и указать, где именно возникли искажения. Это коды, исправляющие ошибки.

Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием.

Внешние источники помех вызывают в основном импульсные помехи, а внутренние - флуктуационные. Помехи, накладываясь на видеосигнал, приводят к двум типам искажений: краевые и дробления. Краевые искажения связаны со смещением переднего или заднего фронта импульса. Дробление связано с дроблением единого видеосигнала на некоторое количество более коротких сигналов. [4]

Помехоустойчивые коды делятся на блочные и непрерывные.

Блочными называются коды, в которых информационный поток символов разбивается на отрезки и каждый из них преобразуется в определённую последовательность (блок) кодовых символов. В блочных кодах кодирование при передаче (формирование проверочных элементов) и декодирование при приёме (обнаружение и исправление ошибок) выполняются в пределах каждой кодовой комбинации (блока) в отдельности по соответствующим алгоритмам.

Непрерывные или рекуррентные коды образуют последовательность символов, не разделяемую на отдельные кодовые комбинации. Кодирование и декодирование непрерывно совершаются над последовательностью элементов без деления их на блоки. Формирование проверочных символов ведётся по рекуррентным (возвратным) правилам, поэтому непрерывные коды часто называют рекуррентными или цепными.

В простейшем цепном коде каждый проверочный элемент формируется путём сложения по модулю 2 соседних или отстоящих друг от друга на определённое число позиций информационных элементов. В канал связи передаётся последовательность импульсов, в которой за каждым информационным следует проверочный.

К непрерывным кодам относятся и свёрточные коды, в которых каждый информационный символ, поступающий на вход кодирующего устройства, вызывает появление на его выходе ряда проверочных элементов, образованных суммированием по модулю 2 данного символа и " k-1 " предыдущих информационных символов. Рекуррентные коды позволяют исправлять групповые ошибки (" пачки " ) в каналах связи.

Блочные коды делятся на равномерные и неравномерные. В равномерных кодах, в отличие от неравномерных, все кодовые комбинации содержат одинаковое число n - символов (разрядов) с постоянной длительностью τ 0 импульсов символов кода. Равномерные коды в основном и применяются в системах связи, так как это упрощает технику передачи и приёма.

Классическими примерами неравномерного кода являются код Морзе, широко применяемый в телеграфии, и код Хафмена, применяемый для компрессии информации (факсимильная связь, ЭВМ).

Никаких специальных мер по исправлению и обнаружению ошибок в коде Морзе не предусматривается в связи с большой избыточностью самого передаваемого текста. В этом смысле код Морзе не относится к классу корректирующих кодов.

Почти все блочные корректирующие коды принадлежат к разделимым кодам, в которых кодовые комбинации состоят из двух частей: информационной и проверочной. Их символы всегда занимают одни и те же позиции, т.е. располагаются на определённых местах. Как правило, в таких кодах, все кодовые комбинации которых содержат n символов, первые k символов являются информационными, а за ними располагаются (n - k) проверочных символов. В соответствии с этим разделимые коды получили условное обозначение – (n, k) - коды.

В неразделимых кодах деление на информационные и проверочные символы отсутствует. К таким кодам относятся, в частности, коды с постоянным весом, так называемые равновесные коды. Например, Международным Консультативным Комитетом по телеграфии и телефонии (МККТТ) рекомендован для использования телеграфный код № 3 - семиразрядный код с постоянным весом, т.е. с числом единиц в каждой кодовой комбинации, равным 3 (W = 3).

Систематические коды образуют наиболее обширную группу (n, k)- разделимых кодов. Особенностью этих кодов является то, что проверочные (корректирующие) символы образуются с помощью линейных операций над информационными. Кроме того, любая разрешённая кодовая комбинация может быть получена в результате линейной операции над набором к линейно независимых кодовых комбинаций. В частности, суммирование по модулю 2 двух и более разрешённых комбинаций также дает разрешённую кодовую комбинацию.

Поскольку теоретической основой получения таких комбинаций является математический аппарат линейной алгебры, то коды и называют линейными, а учитывая, что проверочные символы формируются по определённой системе (правилам), блочные равномерные разделимые линейные коды получили название систематических. Использование аппарата линейной алгебры, в которой важное значение имеет понятие " группа", породило и другое название этих кодов - групповые.

Эти коды получили наибольшее применение в системах передачи дискретной информации.

Несистематические (нелинейные) коды указанными выше свойствами не обладают и применяются значительно реже в специальных случаях. Примером нелинейного кода является уже упоминавшийся неразделимый, равновесный код. Эти коды обычно используются в несимметричных каналах связи, в которых вероятность перехода 1 → 0 значительно больше вероятности перехода 0 → 1 или наоборот. В таких каналах очень маловероятно, чтобы в одном блоке были переходы обоих видов, и поэтому почти все ошибки приводят к изменению веса блока, и, следовательно, обнаруживаются.

Другим примером несистематического кода является код с контрольным суммированием - итеративный код. В этом коде проверочные разряды формируются в результате суммирования значений разрядов как в данной кодовой комбинации, так и одноимённых разрядов в ряде соседних с ней комбинаций, образующих совместный блок. Итеративные коды позволяют получить так называемые мощные коды, т.е. коды с длинными блоками и большим кодовым расстоянием при сравнительно простой процедуре декодирования. Итеративные коды могут строиться как комбинационные посредством произведения двух или более систематических кодов.

К комбинационным кодам можно отнести также антифединговые коды, предназначенные для обнаружения и исправления ошибок в каналах с замираниями (федингом) сигналов. Для таких каналов с группированием ошибок применяют метод перемежения символов или декорелляции ошибок. Он заключается в том, что символы, входящие в одну кодовую комбинацию, передаются не непосредственно друг за другом, а перемежаются символами других кодовых комбинаций исходного систематического или любого другого кода. Если интервал между символами, входящими в одну кодовую комбинацию, сделать длиннее " памяти" (интервала корелляции) канала с замираниями, то в пределах длительности одной исходной кодовой комбинации группирования ошибок не будет. На приёме после обратной " расфасовки" в кодовых комбинациях можно производить декодирование с обнаружением и исправлением ошибок.

В систематических кодах различают два метода формирования проверочной группы символов: поэлементный и в целом.

Наиболее известны среди систематических кодов коды Хемминга, которые исторически были найдены раньше многих других кодов и сыграли большую роль в развитии теории корректирующих кодов. В этих кодах используется принцип проверки на чётность определённого ряда информационных символов.

Проверочная группа из r символов формируется поэлементно по соответствующему алгоритму. Коды Хемминга, имеющие dmin = 3, позволяют исправить одну ошибку

Циклические коды также относятся к классу линейных систематических кодов и обладают всеми их свойствами. Коды названы циклическими потому, что циклический сдвиг любой разрешённой кодовой комбинации также является разрешённой комбинацией. Теория построения циклических кодов базируется на разделах высшей алгебры, изучающей свойства двоичных многочленов.

Особую роль в этой теории играют так называемые неприводимые многочлены, т.е. полиномы, которые не могут быть представлены в виде произведения многочленов низших степеней. В связи с этим циклические коды относят к разновидности полиномиальных кодов.

Среди циклических кодов особое место занимает класс кодов, предложенных Боузом и Рой-Чоудхури и независимо от них Хоквингемом. Коды Боуза-Чоудхури-Хоквингема получили сокращённое наименование БЧХ - коды и отличаются специальным выбором порождающего (образующего) циклический код полинома, что приводит к простой процедуре декодирования.[7]

В циклических кодах " r " проверочных символов, добавляемых к исходным " k " информационным, могут быть получены сразу, т.е. в целом, в результате умножения исходной подлежащей передаче кодовой комбинации Q(x) простого кода на одночлен x r и добавлением к этому произведению остатка R(x), полученного в результате деления произведения на порождающий полином P(x).

В процессе кодирования при передаче информации из информационных разрядов в соответствии с определёнными для каждого К. правилами формируются дополнительные символы — проверочные разряды. При декодировании из принятых кодовых слов по тем же правилам вновь формируют проверочные разряды и сравнивают их с принятыми; если они не совпадают, значит при передаче произошла ошибка. Существуют коды, обнаруживающие факт искажения сообщения, и коды, исправляющие ошибки, т. е. такие, с помощью которых можно восстановить первичную информацию.

Ошибки в передаваемых словах могут возникать вследствие либо независимых искажений разрядов (в этом случае применяют, например, коды типа кода Хэмминга), либо искажений группы рядом стоящих разрядов (для таких случаев разработаны коды, исправляющие одиночные пачки ошибок, и коды, исправляющие более одной пачки ошибок); для обнаружения ошибок в процессе вычислений на ЭВМ разработаны так называемые арифметические коды.


Поделиться:



Популярное:

  1. CASE-средства. Общая характеристика и классификация
  2. I. 3. КЛАССИФИКАЦИЯ И ТЕРМИНОЛОГИЯ I. 3.1. Классификация
  3. II этап. Обоснование системы показателей для комплексной оценки, их классификация.
  4. Административное принуждение и его классификация.
  5. Акриловые материалы холодного отверждения. Классификация эластичных базисных материалов. Сравнительная оценка полимерных материалов для искусственных зубов с материалами другой химической природы.
  6. АКСИОМЫ СТАТИКИ. СВЯЗИ И ИХ РЕАКЦИИ. ТРЕНИЕ. КЛАССИФИКАЦИЯ СИЛ
  7. Алгоритм вычисления кодов Шеннона — Фано
  8. Анатомо-физиологические особенности и классификация
  9. Анатомо-физиологические особенности кроветворения, классификация, основные синдромы.
  10. Анатомо-физиологические особенности, основные синдромы и классификация
  11. Анатомо-физиологические особенности, синдромы и классификация
  12. Банки второго уровня, их классификация и ф-ции.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 1131; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь