Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Конвективные поверхности нагрева котлов. Водный режим котельных агрегатов. – 2 часа
Элементы паровых котельных агрегатов. Испарительные поверхности нагрева. Циркуляция.
Участие испарительных поверхностей нагрева, т. е. кипятильных пучков и топочных экранов вертикально-водотрубных котлов, а также топочных экранов и фестонов котельных агрегатов экранного типа, в процессе парообразования в котле непрерывно уменьшается с повышением давления пара. Если в котлах низкого давления, производящих насыщенный пар, испарительные поверхности нагрева составляют 100% общей поверхности нагрева, то в котельных агрегатах закритического давления испарительные поверхности нагрева почти полностью отсутствуют, так как в закритической области вода, достигшая температуры кипения, переходит в пар без дополнительной затраты тепла. В котельных агрегатах закритического давления приблизительно 35% используемого в них тепла затрачивается на подогрев воды до температуры парообразования, а 65% расходуется на перегрев пара. Система испарительных поверхностей нагрева определяется типом котельного агрегата. Испарительные системы котлов с естественной циркуляцией показаны на рис. 16-1 и 16-2. Испарительные поверхности нагрева вертикально-водотрубных котельных агрегатов (рис. 16-1) состоят из развитого пучка кипятильных труб 2, ввальцованных в верхний 1 и нижний 3 барабаны, топочных экранов 6, питаемых водой из котельных барабанов через опускные 7 и соединительные 4 трубы из камер (коллекторов) 5. Барабаны вертикально-водотрубных котлов изготовляют из листовой стали сварными диаметром 1 000—1 500 мм. Поскольку эти котлы предназначены для работы при давлении 14—40 aтм, толщина стенки барабана получается относительно небольшой. Например, для котлов типа Д КВР на давление 14 aтм толщина стенки барабана диаметром 1 000 мм равна 13 мм, на давление 24 aтм при том же диаметре барабана — 20 мм и на давление 40 aтм при диаметре барабана 960 мм — 40 мм. Штампованные днища барабанов имеют специальные лазы, закрываемые люками. Коллекторы выполняют обычно из труб диаметром до 219 мм; экранные трубы присоединяют к ним сваркой. Испарительные поверхности нагрева котельных агрегатов экранного типа (рис. 16-2) состоят из барабана 2, системы экранных труб 6 и 7 с нижними 9 и 10 и верхними 4 и 5 экранными коллекторами, системы опускных труб 8 и системы соединительных труб 3. Рис. 16-1. Испарительные поверхности нагрева вертикаль вертикально-водотрубного котла. Барабаны изготовляют сварными, днища — штампованными. Диаметр барабана в зависимости от паропроизводительности котельного агрегата и давления пара составляет 1 200—1 800 мм при длине, достигающей ~ 18 м. Толщина стенки барабана для котлов с давлением 100 aтм составляет 90—100 мм, а для котлов с давлением 140 aтм — еще больше. Экранные коллекторы выполняют из бесшовных труб с наружным диаметром до 426 мм. Трубы экранной системы бесшовные с наружным диаметром 51—60мм; их присоединяют к коллекторам на сварке, к барабанам при среднем давлении—вальцовкой, а при высоком давлении— сваркой.
Рис 16-1 Испарительные поверхности нагрева котельного агрегата экранного Рис. 16-3 Схема контура типа естественной циркуляции воды. Для обеспечения надежной работы и расчетной производительности котельного агрегата большое значение имеет правильная организация движения воды в испарительных поверхностях нагрева. Надежная работа может быть обеспечена только в том случае, когда вода, движущаяся в кипятильных и экранных трубах, работающих при повышенной температуре, создаст необходимое охлаждение металла этих труб, так как снижение механической прочности металла при повышении температуры может привести к разрушению их. Расчетная паропроизводительность достигается тем, что при правильно организованном движении воды и пароводяной смеси обеспечивается эффективное использование всех труб испарительной поверхности нагрева котла. Естественная циркуляция в кипятильных и экранных трубах происходит под действием гравитационных сил, обусловливаемых разностью плотностей воды и пароводяной смеси, находящихся в поле тяготения. Для возможности возникновения естественной циркуляции должен существовать замкнутый циркуляционный контур (рис. 16-3), состоящий из двух систем вертикальных или наклонных труб, соединенных последовательно и заполненных водой. Если этот контур попадает в такие условия, что одна система труб обогревается больше, чем другая, или одна система труб обогревается, а другая — нет, то вода, заполняющая контур, приходит в движение, причем находящаяся в сильно обогреваемых трубах вода начинает подниматься, а находящаяся в менее обогреваемых или совсем не обогреваемых трубах — опускаться. Причиной, вызывающей это движение, является уменьшение плотности воды в более обогреваемых трубах в результате повышения ее температуры. Вследствие этого давление на воду в нижней части контура, вызванное силой тяготения, становится неодинаковым и вода приходит в движение. Если подвод тепла к контуру приведет к парообразованию в обогреваемых трубах, то это еще больше увеличит разность плотностей воды и пароводяной смеси, и скорость движения — циркуляция — усилится. Скорость циркуляции будет возрастать с увеличением обогрева трубы, так как при этом усиливается интенсивность парообразования в трубе и в большей степени уменьшается плотность пароводяной смеси. Так как причиной возникновения естественной циркуляции является сила тяжести, то естественная циркуляция будет происходить тем эффективнее, чем выше будет величина ускорения силы тяжести и наоборот. Отношение количества воды, вошедшей в испарительный контур, к количеству пара, который вырабатывается за то же время этим контуром, называют кратностью циркуляции. Для котлов с естественной циркуляцией кратность циркуляции колеблется от 8 до 50. Паровые котлы, как правило, имеют по два-три и более параллельно работающих циркуляционных контура. Например, испарительная поверхность нагрева котла ДКВР, показанная на рис. 16-1, имеет три циркуляционных контура: один, образуемый кипятильными трубами котла, и два, образуемые экранами. Часть питательной воды, поступающей в верхний барабан 1 котла по группе кипятильных труб, являющихся опускными, проходит в нижний барабан 3. Здесь вода разделяется на три потока: один из них по группе кипятильных труб, являющихся подъемными, возвращается в верхний барабан в виде пароводяной смеси, а два других по соединительным трубам 4 проходят в нижние коллекторы 5 экранов, затем в экранные трубы и, наконец, также в виде пароводяной смеси, в верхний барабан котла. Другая часть питательной воды, поступающей в котел, из верхнего барабана котла по опускным трубам 7 также поступает в коллекторы б, увеличивая надежность питания их. В циркуляционных контурах экранного котельного агрегата (рис. 16-2) вода из барабана 2 по опускным водоподводящим трубам 8 поступает в передний и задний нижние коллекторы 9 и в нижние боковые коллекторы 10. Из названных коллекторов вода распределяется по экранным трубам 6 и 7, покрывающим стены топки. Поднимаясь по экранным трубам, вода под действием лучистой теплоты факела частично испаряется, образуя пароводяную смесь. Из экранных труб пароводяная смесь по соединительным трубам 3 поступает в барабан 2, в котором пар отделяется от воды и выходит из барабана по паропроводу 1, а вода возвращается в циркуляционный контур. Описанная схема циркуляции носит принципиальный характер. В каждом конкретном котельном агрегате экранного типа она приобретает свои отличительные особенности. Нарушение циркуляции обычно вызывается тепловой и гидравлической неравномерностью работы параллельно включенных труб. В этом отношении различают опрокидывание циркуляции, возникновение свободного уровня воды в трубах и расслоение потока пароводяной эмульсии. Под опрокидыванием циркуляции понимают явление, когда в результате общих нарушений нормального режима работы котла (неравномерное распределение температуры по ширине котла, шлакование и др.) слабо обогреваемые подъемные трубы, выведенные в водяной объем котла, начинают работать как опускные. Так как при этом скорость воды в этих трубах обычно оказывается незначительной и непостоянной, то образующиеся в воде паровые пузыри попеременно либо очень медленно всплывают, либо так же медленно сносятся потоком вниз. Происходящее при этом объединение паровых пузырей может достигнуть предела, когда значительная часть трубы заполняется паром. Это вызывает резкое повышение температуры стенки трубы, так как величина коэффициента теплоотдачи от стенки трубы к пару в несколько десятков раз меньше величины коэффициента теплоотдачи от стенки трубы к кипящей воде. Если при этом температура стенки трубы превысит допустимую по условиям прочности металла, труба может разорваться. Свободный уровень воды может образоваться в слабо обогреваемых трубах, выведенных в паровое пространство барабана, при параллельной работе их с сильно обогреваемыми трубами. В этом случае может возникнуть такой режим, при котором вся циркулирующая вода начнет поступать только в сильно обогреваемые трубы. В результате в слабо обогреваемых трубах появится свободный уровень воды, так как высота столба воды в них, уравновешивающая высоту столба более легкой пароводяной смеси в сильно обогреваемых трубах, станет меньше высоты трубы. Отрезок трубы над свободным уровнем окажется заполненным паром; охлаждение этой части трубы из-за малой теплоотдачи от внутренней ее поверхности к пару прекратится, и труба может постепенно нагреться до опасной температуры и разорваться. Расслоение потока может возникнуть при движении пароводяной смеси с небольшой скоростью в горизонтальных и слабонаклонных трубах: по нижней части трубы начинает двигаться вода, а по верхней — пар. В результате такого расслоения отвод тепла от верхней части трубы уменьшается, что может привести к чрезмерному повышению температуры металла и разрыву трубы. Так как нарушение интенсивного охлаждения кипятильных труб, наступающее при опрокидывании циркуляции, образовании свободного уровня в трубах и расслоении пароводяной смеси, может привести к аварийному выходу котла из работы, то при проектировании циркуляционных схем паровых котлов уделяют большое внимание исключению возможности возникновения этих ненадежных режимов работы. При проектировании топочных экранов стремятся по возможности выровнять тепловосприятие всех труб каждого контура. Для этого, в частности, прибегают к секционированию экранов, при котором трубы, покрывающие каждую стену топки, разделяют на секции по ширине стены с самостоятельными подводом воды и отводом пароводяной смеси. Стремятся также повысить кратность циркуляции в экранных контурах, что достигается по возможности предельным уменьшением сопротивления опускных и пароотводящих труб путем увеличения их сечения и выполнения пароотводящих труб минимальной длины при увеличении высоты экранов. Испарительные системы котлов с многократной принудительной циркуляцией выполняют различно. Их основной особенностью является использование труб небольшого диаметра: 42—32 мм, а иногда и менее. Циркуляция в этих котлах происходит под действием внешних сил, что достигается установкой насосов. При этом, однако, действие гравитационных сил сохраняется, но оно перестает быть решающим. Кратность циркуляции в котлах с многократной принудительной циркуляцией составляет 5—10. Основной особенностью работы котлов с многократной принудительной циркуляцией является неравномерное распределение воды по параллельно включенным трубам контура, которое проявляется значительно сильнее, чем в котлах с естественной циркуляцией. Это объясняется тем, что в контурах котельных агрегатов с принудительной циркуляцией гидродинамическое сопротивление труб оказывается значительно большим, чем в контурах с естественной циркуляцией. Указанная неравномерность распределения воды приводит к значительной неравномерности — разбегу величин энтальпии пароводяной смеси на выходе из различных труб контура, что может повлечь за собой перегрев металла тех труб, в которые поступает мало воды, и как следствие к их разрушению. Такую неравномерность устраняют установкой в трубах дросселирующих шайб. В прямоточных котлах движение воды и пароводяной смеси определяется теми же уравнениями и носит тот же характер, что и в котлах с многократной принудительной циркуляцией, с той, однако, разницей, что вода и пароводяная смесь проходят через испарительную систему однократно. Сепарирующие устройства барабанных паровых котлов предназначаются для отделения от насыщенного пара, образовавшегося в котле, содержащихся в нем капель воды. В этих каплях в растворенном состоянии находится соответствующее количество тех примесей, которые содержатся в котловой воде; таким образом, с этими каплями пар, выходящий из барабана котла, выносит некоторое количество минеральных примесей. После испарения капель воды, в пароперегревателе вынесенные соли отлагаются на внутренней поверхности змеевиков, вследствие чего ухудшаются условия теплообмена и возникает нежелательное повышение температуры трубок пароперегревателя. Соли могут также отложиться в арматуре паропроводов, приводя к нарушению ее плотности и в проточной части паровой турбины, приводя к снижению экономичности ее работы и создавая вибрацию. Капли воды образуются при прохождении пара через поверхность воды в барабане (зеркало испарения). Проходя через воду, пар разрывает ее поверхностный слой, в результате чего образуются капли, которые выбрасываются в паровое пространство барабана, причем мелкие капли уносятся паром. Унесенную влагу разделяют на грубодисперсную (сепарируемую), которую можно сравнительно легко отделить от пара механическими средствами, и мелкодисперсную (несепарируемую), которую механическими средствами отделить от пара не удается. Влажный пар характеризуется влажностью его и солесодержанием. Влажностью насыщенного пара называют отношение массы содержащейся в нем влаги к общей массе влажного пара, выраженное в процентах. Солесодержанием пара называют отношение произведения средней влажности насыщенного пара и содержания солей в котловой воде к 100. С п= W Cк.в./100, мг/кг
где W — средняя влажность насыщенного пара, % Cк.в — содержание солей в котловой воде, мг/кг. Влажность пара, выходящего из барабана котла, увеличивается с повышением паронапряжения зеркала испарения, т. е. с возрастанием отношения часового количества пара, произведенного котлом (м3/ч), к площади зеркала испарения (м2), с повышением паронапряжения парового объема котла, т. е. с повышением отношения часового количества пара, произведенного котлом (м3/ч), к объему парового пространства барабана (м3), и с подъемом уровня воды в барабане. Осложнения, вызываемые уносом котловой воды, требуют снижения влажности и солесодержания пара, выходящего из барабана котла. В принципе это может быть достигнуто уменьшением рабочего паронапряжения зеркала испарения и парового объема барабана. Однако для котла данной производительности уменьшение этих параметров связано с увеличением размеров барабана котла и, следовательно, удорожанием его; поэтому такой способ снижения влажности пара не является целесообразным. Снижения влажности пара достигают рациональной организацией ввода пароводяной смеси в барабан, обеспечением равномерного распределения пара в паровом пространстве барабана, а также установкой специальных устройств — сепараторов, предназначенных для отделения капель котловой воды от пара. В сепараторах используют различные механические эффекты, как-то гравитацию, инерцию, пленочный эффект и др. Гравитационная сепарация осуществляется, естественно, в процессе движения пара в барабане котла вверх, к выходу из него. Для выравнивания скорости подъема пара по барабану в его водяное пространство (рис. 17, а) погружают дырчатый лист 1. Для дополнительного выравнивания скорости подъема пара в барабане ставят пароприемный дырчатый лист 2, что также улучшает гравитационную сепарацию. Инерционная сепарация (рис. 17, б и в) осуществляется созданием резких поворотов потока пароводяной смеси, поступающей в барабан котла из экранных или кипятильных труб, путем установки отбойных щитков 3. В результате вода из пароводяной смеси как более плотная (инертная) выпадает из потока, а пар как менее плотный (инертный) поднимается к выходу их барабана. Сепарация может быть улучшена установкой на пути пара жалюзийной решетки 4, в которой пар претерпевает дополнительные изменения направления движения, в результате чего (также под воздействием силы инерции) происходит дополнительное отделение капель воды от пара.
Рис. 17. Схемы сепарационных устройств. а — погружной дырчатый лист; б—отбойные и распределительные щитки; в — жалюзийный сепаратор; г — внутрибарабанный циклон; д — швеллерковый сепаратор. На инерционном принципе построена и циклонная сепарация (рис. 17, г), осуществляемая подачей пароводяной смеси в центробежные циклоны 5, в которых вода отбрасывается к стенкам и затем стекает в водяное пространство барабана, а пар выходит через центральную трубу циклона. Циклонная сепарация очень эффективна. Циклоны можно устанавливать в барабане либо выносить наружу. Пленочная сепарация основана на том, что при ударе влажного пара о развитую твердую увлажненную поверхность мельчайшие частицы влаги, содержащейся в паре, прилипают к этой поверхности, образуя на ней сплошную водяную пленку. Влага в этой пленке держится достаточно крепко и не отрывается струей пара, но вместе с тем при вертикальном или наклонном расположении стенки беспрепятственно и беспрерывно стекает. Эффект пленочной сепарации используется в швеллерковых сепараторах (рис. 17, д), в которых развитая твердая поверхность для образования пленки создается системой наклонно расположенных и входящих один в другой швеллерков 6. Применение сепарационных устройств позволяет снизить содержание влаги в паре до 0, 1—0, 15%. При высоком давлении водяной пар приобретает свойство непосредственно растворять некоторые твердые примеси, содержащиеся в котловой воде, причем это свойство его резко усиливается с повышением давления. В частности, при давлении 70 aтм пар начинает растворять заметное количество кремниевой кислоты и хлористого натрия. При снижении давления эти примеси выделяются, образуя твердые отложения на металлических поверхностях. В частности, кремниевая кислота начинает отлагаться в виде SiO2 на лопатках паровых турбин в области давлений ниже 20 aтм, нарушая нормальную работу турбины. Таким образом, при высоком давлении загрязненность пара, производимого котлом, начинает определяться не только величиной механического уноса капель котловой воды, но и растворимостью в паре содержащихся в воде нелетучих соединений. В результате в котлах высокого давления механическая сепарация не может обеспечить надлежащее качество пара. Поскольку при данной влажности солесодержание пара изменяется пропорционально солесодержанию котловой воды, содержание солей в паре можно снизить уменьшением содержания солей в котловой воде. Это, однако, нецелесообразно, так как требует усиленной продувки котла. В связи с этим для котлов высокого давления применяют схему уменьшения солесодержания пара промывкой его питательной водой. Пар после предварительной сепарации из него капель котловой воды направляют в промывочное устройство, в котором он проходит (барботирует) через слой питательной воды. Солесодержание питательной воды обычно в несколько десятков раз меньше солесодержания котловой воды, поэтому в результате такой промывки солесодержание пара резко снижается, поскольку соли его растворяются в промывочном воде. Промывка пара питательной водой приводит также к тому, что содержание в промытом паре растворенных твердых веществ и, в частности, кремниевой кислоты уменьшается в десятки раз. При этом эффект промывки оказывается тем большим, чем больше количество промывающей питательной воды. На промывку поступает вода, прошедшая водяной экономайзер; количество воды, подаваемой на промывку, составляет обычно 25—100% общего количества питательной воды.
Пароперегреватели
Пароперегреватель, обычно отсутствующий в промышленных котельных агрегатах либо служащий только для небольшого перегрева пара, в энергетических котельных агрегатах становится особенно важной поверхностью нагрева. Это обусловлено тем, что с повышением давления и температуры пара относительная доля тепла, расходуемого на перегрев, заметно возрастает, поскольку с ростом температуры перегретого пара его энтальпия увеличивается, а с повышением давления насыщенного пара она уменьшается. Различают пароперегреватели конвективные и комбинированные. Конвективный пароперегреватель размещают в газоходе котельного агрегата, обычно сразу же за топкой, отделяя его от топки двумя-тремя
Рис. 18-1. Пароперегреватель котельного агрегата типа ДКВР. рядами кипятильных труб в вертикально-водотрубных котлах или небольшим фестоном, образованным трубами заднего экрана, в котельных агрегатах экранного типа. Комбинированный пароперегреватель состоит из конвективной части, размещаемой там же, где и конвективный пароперегреватель, а также радиационной и полурадиационной частей, размещаемых в топке. Конвективный пароперегреватель устанавливают в котельных агрегатах низкого, среднего и — в отдельных случаях, высокого давления, когда температура перегретого пара не превышает 440— 510° С. В котельных агрегатах высокого и закритического давления, когда возникает необходимость очень высокого перегрева пара, устанавливают пароперегреватели комбинированного типа. В мощных котельных агрегатах высокого и закритического давления различают также первичный и промежуточный пароперегреватели. В первичном пароперегревателе осуществляют первичный перегрев произведенного котлом пара перед подачей его в турбину. В промежуточном пароперегревателе повторно перегревают пар, после того как он проходит часть высокого давления турбины, до температуры, близкой к начальной. Изготовляют пароперегреватели из стальных труб наружным диаметром от 28 до 42 мм, изгибаемых в змеевики большей частью с вертикальным расположением их. Скорость пара в трубах пароперегревателя выбирают, исходя из условия обеспечения надежности температурного режима труб, руководствуясь значениями массовой скорости для первичных пароперегревателей 500—1 200 кг/м2ч. При выборе скорости движения пара учитывают, что гидравлическое сопротивление пароперегревателя не должно превышать 10% рабочего давления пара. Большинство пароперегревателей имеет специальное устройство для регулирования температуры пара. Конвективный пароперегреватель котла ДКВР (рис. 18-1) изготовляется из стальных цельнотянутых труб 3 диаметром 32 x 3 мм. Входные концы труб пароперегревателя развальцованы в верхнем барабане 1 котла, выходные приварены к камере перегретого пара 2, которая у котлов давлением 14 и 24 атм. выполнена из трубы диаметром 133 X 5 мм, а у котлов давлением 40 amм — из трубы диаметром 133 X 16 мм. Для возможности выноса пароперегревателя при ремонте через левую боковую стену котла змеевики имеют чередующийся шаг: 90 и 60 мм, а крайние трубы кипятильного пучка в области пароперегревателя расположены с шагом 150 мм. Узел А Рис. 18-2. Конвективный пароперегреватель котельного агрегата экранного типа, а—общий вид; б—детали крепления. Пароперегреватели унифицированы по профилю для котлов на давления 14 и 24 amм и для котлов на давление 40 amм; кроме того, они унифицированы для всех котлов по диаметру труб и камер. В котлах различной паропроизводительности пароперегреватели различаются числом параллельно включенных змеевиков. Число петель в змеевике изменяется от одной при перегреве пара до 250° С до пяти при перегреве пара до 440° С. Пароперегреватели котлов на давление 14 и 24 amм выполняют одноходовыми, на давление 40 атм — двухходовыми. Конвективный пароперегреватель котельных агрегатов экранного типа обычно выполняют из двух последовательно расположенных групп змеевиков. На рис. 18-2 показан пароперегреватель экранного котельного агрегата с естественной циркуляцией. Насыщенный пар из барабанакотла поступает в камеру 2, из которой он проходит в систему змеевиков 6 второй по ходу газов ступени пароперегревателя. В этой ступени пар движется навстречу потоку дымовых газов, т. е. здесь осуществляется противоточное движение теплоносителей, которое характеризуется большим значением величины усредненного перепада температур, что повышает эффективность использования поверхности нагрева для передачи заданного количества тепла. Пройдя вторую ступень пароперегревателя, частично перегретый пар поступает в ее выходную камеру 4, служащую промежуточной камерой. Отсюда пар через систему перепускных труб передается во вторую промежуточную камеру 5, которая вместе с тем является входной камерой в первую по ходу газов ступень пароперегревателя 1. Трубки этой ступени собирают так, Рис. 18-3. Конвективно-радиационный пароперегреватель котла экранного типа. чтобы обеспечить движение пара по смешанной прямоточно-противоточной схеме, облегчающей условия работы первых по ходу газов рядов пароперегревательных трубок, так как в них поступает пар относительно низкой температуры. Пройдя первую ступень пароперегревателя, окончательно перегретый пар направляется в камеру перегретого пара 3, а из нее — в главный паропровод. Коэффициент теплопередачи в пароперегревателе зависит от рода сжигаемого топлива, главным образом от его влажности и содержания водорода. Поэтому для получения одинаковой температуры перегретого Комбинированный пароперегреватель котельного агрегата высокого давления, состоящий из конвективной, радиационной и полурадиационной частей, схематически показан на рис. 18-3. Пар из барабана 1 поступает в радиационную часть 2, размещенную на потолке топочной камеры, затем в полурадиационную часть 3, выполненную в виде ширмового пароперегревателя, размещенного на выходе из топки, и далее по потолочным трубам 4 — в первую ступень конвективного пароперегревателя 5. Пройдя эту ступень, пар через пароохладитель 6 и вторую ступень конвективного пароперегревателя 7 выходит в сборный коллектор (камеру) перегретого пара. Радиационная часть пароперегревателя характерна тем, что она, так же как и топочные экраны, воспринимает тепло путем излучения от факела. Ее размещают не только на потолке топочной камеры, но и на стенах ее, часто между трубами экрана. Полурадиационные ширмовые пароперегреватели выполняют в виде отдельных плоских ширм из параллельно включенных труб. Эти ширмы размещают параллельно на расстоянии 500 — 2000мм на выходе из топки перед фестоном. Тепло ширмовый пароперегреватель воспринимает как конвекцией от дымовых газов, омывающих его трубы, так и излучением слоя этих газов, проходящих между отдельными ширмами. Гидродинамика пароперегревателя характеризуется неравномерностью распределения и перегрева пара по параллельно включенным трубам. Концентрированный ввод пара во входной коллектор приводит к тому, что пар распределяется по отдельным многочисленным параллельно включенным трубам пароперегревателя неравномерно. В результате в тех трубах, в которые поступает мало пара, температура его на выходе из трубы получается более высокой, чем пара на выходе из тех труб, в которые поступает много пара. Это явление дополнительно осложняется еще тем, что по ширине газохода трубы пароперегревателя обогреваются дымовыми газами неравномерно; в средней части газохода трубы получают больше тепла, чем по его краям. Отношение максимального приращения энтальпии пара в отдельной трубе пароперегревателя ∆ iтр к среднему для всего пароперегревателя ∆ iпп равное:
ρ =∆ iтр /∆ iпп
называют тепловой разверкой труб пароперегревателя. Для современных котельных агрегатов с давлением 40 am и выше тепловая разверка труб пароперегревателя чревата опасными последствиями: стенки тех труб, через которые проходит мало пара, могут нагреться до температуры, превышающей допустимую для данной марки стали, что может привести к повреждению трубы. Тепловую разверку труб пароперегревателя можно уменьшить различными способами: рассредоточенным вводом пара во входные коллекторы; разделением пароперегревателя на две-три последовательно включенные ступени со смещением пара между этими ступенями; разделением пароперегревателя на две-три параллельные части по ширине котельного агрегата с передачей пара из одной части в другую. Регулирование температуры перегретого пара в энергетических котельных агрегатах необходимо для обеспечения надежной и бесперебойной работы не только котельных агрегатов, но и паровых турбин. При изменении режима работы котельного агрегата температура перегретого пара, выходящего из пароперегревателя, может изменяться в широких пределах. Между тем в пароперегревателях, предназначенных для получения перегретого пара высокой температуры (440—570° С), металл работает при температуре, близкой к предельной для стали выбранной марки. В результате даже незначительное повышение температуры перегретого пара но сравнению с расчетным может привести к недопустимому по условиям прочности повышению температуры металла труб пароперегревателя и как следствие к выходу его из строя. По этой причине, а также для обеспечения нормальных условий работы турбины, которая тоже очень чувствительна к повышению температуры перегретого пара, в котельных агрегатах высокого давления особое значение приобретают вопросы регулирования температуры пара. Температура пара в рассматриваемых котлах регулируется в основном тремя методами: охлаждением перегретого пара в поверхностном теплообменнике пароохладителя или впрыском воды; изменением тепловосприятия пароперегревателя рециркуляцией топочных газов из газохода конвективной шахты в нижнюю часть топочной камеры; изменением положения ядра факела по высоте топки при установке горелок в три—пять ярусов. Наиболее распространено регулирование температуры перегретого пара поверхностными пароохладителями, представляющими собой трубчатый теплообменник, который обычно размещают во входном 2 (на рис. 18-2) или промежуточном коллекторе пароперегревателя. Охлаждение пара достигается путем отвода от него тепла питательной водой, часть которой пропускают по трубкам теплообменника. Из теплообменника питательная вода возвращается в питательную линию, так что тепло, отнятое от пара в пароохладителе, не теряется, а возвращается в котел. Изменяя количество воды, подаваемое в пароохладитель, можно изменить количество отнятого от пара тепла и тем самым отрегулировать температуру пара. Обычно через пароохладитель пропускают 30—60% общего расхода питательной воды.
Водяные экономайзеры
Водяной экономайзер в современном котельном агрегате воспринимает 12—18% общего количества полученного им тепла. Водяные экономайзеры выполняют двух типов: чугунные из ребристых труб и стальные гладкотрубные. Чугунные ребристые водяные экономайзеры устанавливают в котлах небольшой паропроизводительности давлением до 24 amм. Стальные гладкотрубные экономайзеры можно устанавливать в котельных агрегатах любой производительности и давления, но преимущественно они получили распространение для котельных агрегатов средней и большой паропроизводительности при давлении 40 атм и выше. Чугунный ребристый водяной экономайзер (рис. 19-1) представляет собой систему ребристых труб 1, которые собраны в колонну, состоящую из нескольких горизонтальных рядов. Число труб в горизонтальном ряду определяется из условия получения требуемой скорости движения продуктов сгорания (6—9 м/сек при номинальной нагрузке), а число горизонтальных рядов — из условия получения требуемой поверхности нагрева экономайзера. На концах экономайзерных труб имеются квадратные приливы — фланцы 2 несколько большего размера, чем ребра на трубе. Эти фланцы после сборки экономайзера образуют две сплошные металлические стенки. Газоход экономайзера отделяется от окружающей среды с двух сторон этими стенками, а с двух других сторон — кирпичной обмуровкой или обшивкой 6. Экономайзерные трубы соединяются чугунными деталями — калачами 3 и 4, присоединяемыми к трубам на фланцах. Вода из питательной линии подается в одну из крайних нижних труб экономайзера, а затем последовательно проходит через эти калачи по всем трубам, после чего поступает в котел. Применением описанной схемы движения воды достигается скорость ее, обеспечивающая смывание со стенок труб пузырьков воздуха, которые выделяются из воды при иагреве ее и могут послужить причиной разъедания металла труб. Движение воды сверху вниз не допускается во избежание возникновения гидравлических ударов. Температура воды при входе в экономайзер должна превышать температуру точки росы дымовых газов не менее чем на 10° С, чтобы исключить возможность конденсации водяных паров, входящих в состав дымовых газов, и осаждения влаги на трубах экономайзера. Конечная температура воды, подогретой в чугунном водяном экономайзере, при установке его к котлам с непрерывным питанием, а также к котлам с малым объемом воды в барабане при установке автоматических регуляторов питания, должна быть ниже температуры насыщения при данном давлении не менее чем на 20° С, чтобы исключить парообразование в экономайзере и гидравлические удары. Выхов Коды
а) Рис. J9-1. Чугунный ребристый одноходовой водяной экономайзер а — общий вид (трубы условно показаны без ребер); - Ход газов б —детали экономайзера; в и г—схемы включения. Во всех остальных случаях конечная температура воды должна быть ниже температуры насыщения при данном давлении не менее чем на 40Э С. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1466; Нарушение авторского права страницы