Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КЛАССИФИКАЦИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ



 

Электроизмерительные приборы можно классифицировать по следующим признакам:
методу измерения;
роду измеряемой величины;
роду тока;
степени точности;
принципу действия
.
Существует два метода измерения: 1) метод непосредственной оценки, заключающийся в том, что в процессе измерения сразу оценивается измеряемая величина;
2) метод сравнения, или нулевой метод, служащий основой действия приборов сравнения: мостов, компенсаторов.
По роду измеряемой величины различают электроизмерительные приборы: для измерения напряжения (вольтметры, милливольтметры, гальванометры); для измерения тока (амперметры, миллиамперметры, гальванометры); для измерения мощности (ваттметры); для измерения энергии (электрические счетчики); для измерения угла сдвига фаз (фазометры); для измерения частоты тока (частотомеры); для измерения сопротивлений (омметры), и т.д.
В зависимости от рода измеряемого тока различают приборы постоянного, переменного однофазного и переменного трехфазного тока.
По степени точности приборы подразделяются на следующие классы точности: 0, 05; 0, 1; 0, 2; 0, 5; 1, 0; 1, 5; 2, 5; и 4, 0. Класс точности не должен превышать приведенной относительной погрешности прибора, которая определяется по формуле:

где А - показания поверяемого прибора; А0 - показания образцового прибора; Amax - максимальное значение измеряемой величины (предел измерения).
В зависимости от принципа действия различают системы электроизмерительных приборов. Приборы одной системы обладают одинаковым принципом действия. Существуют следующие основные системы приборов: магнитоэлектрическая, электромагнитная, электродинамическая, индукционная.

 

 

МАГНИТОЭЛЕКТРИЧЕСКАЯ СИСТЕМА

 

Приборы этой системы (рис. 3.3.1) содержат постоянный магнит - 1, к которому крепятся полюса - 2. В межполюсном пространстве расположен стальной цилиндр - 3 с наклеенной на него рамкой - 4. Ток в рамку подается через две спиральные пружины -5. Принцип действия прибора основан на взаимодействии тока в рамке с магнитным полем полюсов.

Это взаимодействие вызывает вращающий момент, под действием которого рамка и вместе с ней цилиндр повернутся на угол.
Спиральная пружина, в свою очередь, вызывает противодействующий момент.
Так как вращающий момент пропорционален току, , а противодействующий момент пропорционален углу закручивания пружин , то можно написать:

где k и D - коэффициенты пропорциональности. Из написанного следует, что угол поворота рамки

а ток в катушке

где - чувствительность прибора к току, определяемая числом делений шкалы, соответствующая единице тока; CI - постоянная по току, известная для каждого прибора.
Следовательно, измеряемый ток можно определить произведением угла поворота (отсчитывается по шкале) и постоянной по току CI.
К достоинствам этой системы относят высокую точность и чувствительность, малое потребление энергии.
Из недостатков следует отметить сложность конструкции, чувствительность к перегрузкам, возможность измерять только постоянный ток (без дополнительных средств).

 

ЭЛЕКТРОМАГНИТНАЯ СИСТЕМА

 

Приборы этой системы (рис. 3.4.1) имеют неподвижную катушку - 1 и подвижную часть в виде стального сердечника - 2, связанного с индикаторной стрелкой - 3 противодействующей пружины - 4.
Измеряемый ток, проходя по катушке, намагничивает сердечник и втягивает его в катушку.
При равенстве вращающего и тормозящего моментов система успокоится. По углу поворота подвижной части определяют измеряемый ток.
Среднее значение вращающего момента пропорционально квадрату измеряемого тока:

Так как тормозящий момент, создаваемый спиральными пружинами, пропорцио-нален углу поворота подвижной части, уравнение шкалы прибора запишем в виде:

Другими словами, угол отклонения подвижной части прибора пропорционален квадрату действующего значения переменного тока.

К главным достоинствам электромагнитной силы относятся: простота конструкции, надежность в работе, стойкость к перегрузкам.
Из недостатков отмечаются: низкая чувствительность, большое потребление энергии, небольшая точность измерения, неравномерная шкала.

 

ЭЛЕКТРОДИНАМИЧЕСКАЯ СИСТЕМА

 

Эта система представляет собой две катушки (рис. 3.5.1), одна из которых неподвижная, а другая - подвижная. Обе катушки подключаются к сети, и взаимодействие их магнитных полей приводит к повороту подвижной катушки относительно неподвижной.

Из уравнения видно, что шкала электродинамической системы имеет квадратичный характер. Для устранения этого недостатка подбирают геометрические размеры катушек таким образом, чтобы подучить шкалу, близкую к равномерной.
Эти системы чаще всего используются для измерения мощности, т.е. в качестве ваттметров, тогда:

В этом случае шкала ваттметра равномерная. Основным достоинством прибора является высокая точность измерения. К недостаткам относятся малая перегрузочная способность, низкая чувствительность к малым сигналам, заметное влияние внешних магнитных полей.

 

ИНДУКЦИОННАЯ СИСТЕМА

 

Приборы индукционной системы получили широкое распространение для измерения электрической энергии. Принципиальная схема прибора приведена на рис. 3.6.1. Электрический счетчик содержит магнитопровод - 1 сложной конфигурации, на котором размещены две катушки; напряжения - 2 и тока - 3. Между полюсами электромагнита помещен алюминиевый диск - 4 с осью вращения - 5. Принцип действия индукционной системы основан на взаимодействии магнитных потоков, создаваемых катушками тока и напряжения с вихревыми токами, наводимыми магнитным полем в алюминиевом диске.

Вращающий момент, действующий на диск, определяется выражением:

где ФU - часть магнитного потока, созданного обмоткой напряжения и проходящего через диск счетчика; ФI - магнитный поток, созданный обмоткой тока; - угол сдвига между ФU и ФI. Магнитный поток ФU пропорционален напряжению Магнитный поток ФI пропорционален току:
Для того чтобы счетчик реагировал на активную энергию, необходимо выполнить условие:

 

В этом случае

т.е. вращающий момент пропорционален активной мощности нагрузки.
Противодействующий момент создается тормозным магнитом - 6 и пропорционален скорости вращения диска:

В установившемся режиме и диск вращается с постоянной скоростью. Приравнивая два последних уравнения и решив полученное уравнение относительно угла поворота диска

Таким образом, угол поворота диска счетчика пропорционален активной энергии. Следовательно, число оборотов диска n тоже пропорционально активной энергии.

 

 

ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ

 

Измерение тока производится прибором, называемым амперметром.
Существуют четыре схемы включения амперметра в цепь. Первые две (рис. 3.7.1) предназначены для измерения постоянного тока, а две вторые схемы - для измерения переменного тока.

Вторая и четвертая схемы применяются в тех случаях, когда номинальные данные амперметра меньше измеряемой величины тока. В этом случае при определении истинного значения тока нужно учитывать коэффициент преобразования:

где Iист - истинное значение тока,
Iизм - измеренное значение тока,
kпр - коэффициент преобразования.
Измерение напряжения производится вольтметром. Здесь также возможны четыре различных схемы подключения прибора (рис. 3.7.2).

В этих схемах также используются методы расширения пределов измерения напряжения (вторая и четвертая схемы).

 

ИЗМЕРЕНИЕ МОЩНОСТИ

 

Для измерения мощности постоянного тока достаточно измерить напряжение и ток. Результат определяется по формуле:

Метод амперметра и вольтметра пригоден и для измерения полной мощности, а также активной мощности переменного тока, если cosφ = 1.
Чаще всего измерение мощности осуществляется одним прибором - ваттметром.
Как было сказано ранее, для измерения мощности лучшей является электродинамическая система.
Ваттметр снабжен двумя измерительными элементами в виде двух катушек: последовательной и параллельной. По первой катушке течет ток, пропорциональный нагрузке, а по второй - пропорциональный напряжению в сети.
Угол поворота подвижной части электродинамического ваттметра пропорционален произведению тока и напряжения в измерительных катушках:

На рис. 3.8.1 показана схема включения ваттметра в однофазную сеть.

В трехфазных сетях для измерения мощности используют один, два и три ваттметра.
Если нагрузка симметричная и включена " звездой", то достаточно одного ваттметра (рис. 3.8.2, а). Если в этой же схеме нагрузка несимметрична по фазам, то используются три ваттметра (рис. 3.8.2, б). В схеме соединения потребителей " треугольником" измерение мощности производится двумя ваттметрами (рис. 3.8.2, в).

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ

 

Электрическое сопротивление в цепях постоянного тока может быть определено косвенным методом при помощи вольтметра и амперметра. В этом случае:

Можно использовать омметр - прибор непосредственного отсчета. Существуют две схемы омметра: а) последовательная; б) параллельная (рис. 3.9.1).

Уравнение шкалы последовательной схемы намерения:

где г - сопротивление цепи гальванометра. При угол поворота подвижной части прибора определяется величиной измеряемого сопротивления Rx. Поэтому шкала прибора может быть непосредственно проградуирована в Омах. Ключ K используется для установки стрелки прибора в нулевое положение. Омметры параллельного типа удобнее применять для измерения небольших сопротивлений
Измерение сопротивлений можно также осуществлять логометрами. На рис. 3.9.2 приведена принципиальная схема логометра.

Для этой схемы имеем:

Отклонение подвижной части логометра:

Таким образом, показание прибора не зависит от напряжения источника питания и определяется величиной измеряемого сопротивления Rx.

 


Поделиться:



Популярное:

  1. CASE-средства. Общая характеристика и классификация
  2. I. 3. КЛАССИФИКАЦИЯ И ТЕРМИНОЛОГИЯ I. 3.1. Классификация
  3. II этап. Обоснование системы показателей для комплексной оценки, их классификация.
  4. Административное принуждение и его классификация.
  5. Акриловые материалы холодного отверждения. Классификация эластичных базисных материалов. Сравнительная оценка полимерных материалов для искусственных зубов с материалами другой химической природы.
  6. АКСИОМЫ СТАТИКИ. СВЯЗИ И ИХ РЕАКЦИИ. ТРЕНИЕ. КЛАССИФИКАЦИЯ СИЛ
  7. Анатомо-физиологические особенности и классификация
  8. Анатомо-физиологические особенности кроветворения, классификация, основные синдромы.
  9. Анатомо-физиологические особенности, основные синдромы и классификация
  10. Анатомо-физиологические особенности, синдромы и классификация
  11. Банки второго уровня, их классификация и ф-ции.
  12. В12.Понятие и классификация органов государства.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 828; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.025 с.)
Главная | Случайная страница | Обратная связь