Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Типы проводимости полупроводниковых материалов. Электронно-дырочный переход. Основные параметры полупроводниковых диодов.



 

Типы проводимости полупроводниковых материалов и свойства электронно-дырочного перехода рассматривались в курсе молекулярной физики, раздел «Электричество». Поэтому сейчас выделим лишь основные положения этих вопросов.

В чистом полупроводнике, при температуре выше абсолютного нуля по шкале Кельвина генерируется два вида подвижных носителей зарядов – электрон и дырка. При наличии таких носителей полупроводник приобретает способность проводить электрический ток. Электропроводность, обусловленная только генерацией пар электрон-дырка, называется собственной. Количественно она может быть определена выражением

 

,

где:

 

g = 1, 6 × 10-19 K – заряд электрона;

n и p – концентрация подвижных электронов и дырок, причем n=p;

mn и mp – подвижность носителей.

Концентрация подвижных носителей заряда зависит от температуры, поэтому:

 

,

где:

А – константа;

Т - температура по Кельвину;

W – ширина запретной зоны;

К = 1, 38 × 10-23 – постоянная Больцмана.

Проводимость полупроводников существенно изменяется при добавлении примеси. Так, если валентность примеси больше валентности полупроводника (например атомы фосфора), то концентрация электронов существенно (на 10 – 20 порядков) увеличивается. Поэтому количественно проводимость может быть вычислена выражением

 

 

где nn – концентрация примесных носителей.

Такая примесь называется донорной, проводимость – электронной, а полупроводник – полупроводником n типа.

При добавлении примеси, валентность которой меньше валентности полупроводника (например, атомы бора), в теле полупроводника резко увеличивается концентрация дырок. Поэтому

 

,

 

где:

РР - концентрация примесных носителей.

Такая примесь называется акцепторной, проводимость - дырочной, а полупроводник - полупроводником p - типа.

Металлургическая граница между полупроводниками двух типов называется электронно-дырочным или p-п переходом. Это основной рабочий элемент полупроводниковых электронных приборов. Выделим следующие его свойства.

1. При отсутствии внешнего электрического поля у границы p-п перехода образуется объемные заряды электронов в p области и дырок в п области. Перепад потенциала зарядов образует потенциальный барьер , причем

 

,

 

где: - концентрация ионизированных атомов в полупроводнике;

 

- температурный потенциал, при Т=3000К, .

В непосредственной близости от границы перехода образуется слой полупроводника обедненного носителями зарядов. Проводимость этого слоя мала и его называют запирающим. Сопротивление р-п перехода определяется толщиной запирающего слоя.

В установившемся режиме через р-п переход протекают диффузионные токи электронов in диф и дырок iР диф, а также дрейфовые (обратные) токи электронов in др и дырок iР др, причем

in диф = - in др;

iР диф = - iР др.

Поэтому результирующий ток равен нулю.

 

2. При обратном включении р-n перехода (минус к Р области, плюс к n области) запирающий слой расширяется. Сопротивление р-п перехода увеличивается (до 104 Ом). Практически все напряжение внешнего источника подает на этом сопротивлении, увеличивая высоту потенциального барьера , причем

.

 

Этот барьер препятствует диффузионным токам, уменьшая их до нуля (в зависимости от величины ). Значение дрейфовых токов остается прежним или несколько возрастает в зависимости от теплового режима полупроводника.

 

3. При прямом включении р-п перехода (плюс к р области, минус к n области), запирающий слой уменьшается. Сопротивление р-n перехода подает (до п100 Ом). Теперь падение напряжения встречно потенциальному барьеру , причем

.

 

Это приводит к увеличению диффузионных токов, которые называют прямыми, и обозначают Iпр.

Таким образом, р-n переход обладает односторонней проводимостью. Это основное свойство целого класса полупроводниковых электронных приборов, называемых диодами. Напомню, что диод это полупроводниковый электронный прибор с одним р-n переходом и двумя выводами. Условное графическое обозначение диода приведено на рис. 12.3а.

Часто вывод, к которому подключают " +" источника питания при прямом включении, называют анодом. Второй вывод - катодом.

Диоды характеризуются следующими основными параметрами:

Среднее значение прямого тока и напряжения.

Среднее значение обратного тока.

Максимально допустимое прямое и обратное напряжение.

Максимально допустимое значение прямого тока.

Максимально допустимые мощность, частота, границы температуры окружающей среды и др.

 

Обобщенной характеристикой диодов является вольтамперная характеристика, т.е. зависимость тока диода от приложенного к нему напряжения (рис. 12.3б). Она описывается выражением

,

где:

- приложенное напряжение;

- обратный (дрейфовый) ток, который часто называют тепловым.

Так как при комнатной температуре , то при прямых напряжениях выше 0, 1 В значением единицы в последнем выражении можно пренебречь. Значит, прямой ток через диод изменяется по экспоненциальному закону.

При обратных напряжениях > 0, 1В экспоненциальный член выражения становится пренебрежимо малым по сравнению с единицей. Им можно пренебречь. Значит, при обратном включении ток через диод становится очень малым, меняет знак на обратный и не зависит от приложенного напряжения.

 

Биполярные транзисторы.

Транзисторы - это электронные приборы, предназначенные для усиления и преобразования сигналов. Наиболее распространены транзисторы с двумя р-п переходами и тремя выводами. Их называют биполярными, так как в работе используются носители обоих знаков.


Структурная схема транзистора приведена на рис. 12.4. Переходы делят монокристалл полупроводника на три области, причем средняя область имеет тип электропроводности, противоположный крайним.

Среднюю область называют базой, одну из крайних областей эмиттером, а другую коллектором. В зависимости от типа электропроводимости крайних областей существуют транзисторы р-п-р или п-р-п структуры. На рис. 5а приведено схемное обозначение транзистора р-п-р, а на рис. 5б - транзистора п-р-п типа.

В качестве исходного материала транзисторов используют германий или кремний. При изготовлении транзисторов обязательно должны быть выполнены два условия:

1) толщина базы (расстояние между эмиттерным и коллекторным переходами) должна быть малой по сравнению с длиной свободного пробега носителей заряда;

2) концентрация примесей в эмиттере должна быть значительно больше, чем в базе.

В зависимости от напряжения на р-п переходах транзистор может работать в одном из трех режимах:

- в активном режиме - когда на эмиттерном переходе напряжение прямое, а на коллекторном обратное;

- в режиме отсечки (запирания) - когда на оба перехода поданы обратные напряжения;

- в режиме насыщения - когда на оба перехода поданы прямые напряжения.

 

Рассмотрим работу транзистора п-р-п в активном режиме. В цепь источника коллекторного напряжения - ЕК транзистор включают последовательно с резистором RК. На вход транзистора подается управляющая ЭДС-Е (рис. 12.6а). При таком включении эмиттер является общей точкой входной и выходной цепей. Поэтому оно называется включением с общим эмиттером.

 

При отсутствии напряжений (ЕК=0; Е =0) р-п переходы находятся в состоянии равновесия. Токи через них равны нулю.

Внешние источники включают так, чтобы на эмиттерном переходе было прямое напряжение (плюс источника Е подан на базу, минус - на эмиттер), а на коллекторном переходе - обратное (плюс источника ЕК - на коллектор, минус - на эмиттер). Обычно ЕК> > Е . Поэтому:

 

.

 

Под воздействием прямого напряжения Uбэ начинается усиленная диффузия электронов из эмиттера в базу, образуя ток эмиттера Iэ. Так как база транзистора выполняется тонкой, основная часть электронов достигает коллекторного перехода не попадая в центры рекомбинации. Эти электроны захватываются ускоряющим полем закрытого коллекторного перехода с потенциалом:

 

,

и втягиваются в область коллектора.

Ток электронов, попавших из эмиттера в коллектор, замыкается через внешнюю цепь и источник ЕК. Лишь небольшая часть электронов рекомбинирует в базе с дырками. Эта часть уменьшает ток коллектора на величину a, т.е.:

Iк = a Iэ, (12.3)

 

где a = 0, 9 ¸ 0, 99 - коэффициент передачи тока эмиттера.

Заряд рекомбинировавших электронов остается в базе. Для компенсации этого заряда из источника Еб в базу поступают дырки. Поэтому ток базы представляет собой ток рекомбинации:

 

. (12.4)

 

Ток коллектора, определяемый выражением (12.3), зависит от напряжения Uбэ и называется управляемым. Кроме управляемого тока, через закрытый коллекторный переход протекает обратный ток Iкбо, обусловленный дрейфом собственных носителей заряда. С учетом этого:

 

,

а

.

Выразим ток эмиттера из последнего выражения:

 

 

Подставляя это значение в выражение для тока коллектора, получаем:

 

, (12.5)

 

где b - коэффициент передачи тока базы > > 1;

Iкэо – обратный ток транзистора.

Так как Iкэо обычно пренебрежимо мал, справедливо приближенное равенство:

 

. (12.6)

 

Оно показывает, что если ток базы изменить на величину Iб, то ток коллектора изменится на величину bDIб, т.е. в b раз большую. В этом и заключается суть усиления.

К основным параметрам биполярных транзисторов относятся средние и максимально допустимые значения токов коллектора и базы, максимальные значения напряжений Uкэ; Uбэ; Uкб; коэффициент передачи тока базы b, максимально допустимые частота и мощность и т.п.

Каждый транзистор по схеме с ОЭ описывается семействами выходных и входных характеристик (рис. 12.6б и 12.6в соответственно). Выходной вольтамперной характеристикой транзистора называется зависимость тока коллектора от напряжения Uкэ т.е. Iк = j(Uкэ), снятая при постоянном токе базы Iб = const.

На выходной характеристике можно выделить три характерных участка. Первый участок лежит в области малых значений . При таком напряжении коллекторный переход оказывается открытым. Транзистор работает в режиме насыщения. Ток коллектора резко изменяется с изменением напряжения . Напряжение отсекающее крутой участок лежит в пределах . Первый участок используется в импульсной технике при реализации ключевого режима транзистора.

Большую часть характеристики занимает II, пологий участок. На этом участке ток коллектора почти не зависит от напряжения . Его значение практически полностью определяется током базы (12 в.). Транзистор работает в активном режиме, обеспечивая усиление сигнала. Небольшой наклон пологого участка обусловлен тем, что с ростом увеличивается потенциальный барьер закрытого коллекторного р-n перехода, расширяется его запирающий слой за счет толщины базы. В более тонкой базе меньше вероятность рекомбинации, поэтому значение b, а значит и увеличивается.

Резкое увеличение тока на III участке характеристики вызывается явлением электрического пробоя.

Входной вольтамперной характеристикой транзистора называется зависимость тока базы от напряжения , при постоянном напряжении . При оба перехода в транзисторе работают под прямым напряжением.

Токи коллектора и эмиттера складываются в базе. Входная характеристика транзистора, в этом случае, представляет собой ВАХ двух p-n переходов, включенных параллельно.

При коллекторный переход закрывается. Транзистор переходит в активный режим работы. Ток базы в этом режиме определяется выражением (12.4). Поэтому входная характеристика транзистора строится как прямая ветвь ВАХ одного (эмиттерного) перехода.

В заключение необходимо отметить, что токи транзистора сильно зависят от температуры окружающей среды. Это общий недостаток полупроводниковых приборов. Причина этого недостатка в том, что с ростом температуры увеличивается концентрация собственных носителей заряда (пары электрон-дырка). Поэтому ток удваивается с увеличением температуры на каждые 8 ¸ 100С. Кроме того, с увеличением температуры центры рекомбинации (дефекты кристаллической решетки) постепенно заполняются, и вероятность рекомбинации носителей в базе падает, а, значит, коэффициент передачи тока базы b увеличивается. Таким образом, при нагреве на 20 ¸ 300 С ток может измениться на десятки процентов.

 

 

Полевые транзисторы

Биполярные транзисторы нашли широкое применение в электронике, но они имеют существенные недостатки. Недостатки обусловлены двумя факторами. Во-первых, активный режим работы предполагает, что эмиттерный переход транзистора открыт и его сопротивление мало. Поэтому такой прибор потребляет заметную мощность от источника входного сигнала. Во вторых, участие в работе транзистора носителей зарядов двух знаков обуславливает высокий уровень внутренних шумов из-за самопроизвольных рекомбинаций в объеме эмиттера и коллектора. От этих недостатков свободны полевые транзисторы. Величина тока этого транзистора управляется электрическим полем закрытого р-n перехода. Поэтому такой прибор практически не потребляет ток из входной цепи.

 

 

Полевые транзисторы подразделяются на два типа: с р-n переходом и МДП-типа. Разрез структуры полевого транзистора с р-n переходом приведен на рис. 12.7а. Слой полупроводника с проводимостью р-типа называется проводящим каналом. Он имеет два выхода во внешнюю цепь: И – исток, С – сток. Слои полупроводника с проводимостью n – типа соединены между собой и имеют вывод во внешнюю цепь, называемый затвором З. Полярность включения источников напряжения приведена на рис. 12.7а. На рис. 12.7б приведено схемное обозначение транзистора с р каналом, а на рис. 12.7в – с n каналом.

Когда управляющее напряжение по каналу течет ток, значение которого зависит от напряжения . Эта зависимость приведена на рис. 12.7г. Напряжение равномерно распределено по длине канала. Оно вызывает обратное смещение р-n переходов, причем наибольшее обратное напряжение приложено к области стока, а в области истока переходы находятся в равновесном состоянии (рис.12.8а).

 

 

На рис.12.8 а, б заштрихованная площадь имитирует область запирающего слоя р-n перехода.

С увеличением напряжения область двойного запирающего слоя увеличивается (пунктирная линия на рис. 12.8а), сужая проводящий канал и увеличивая его сопротивление. Поэтому зависимость имеет нелинейный характер. При некотором значении границы р-n перехода смыкаются и рост тока , при дальнейшем увеличении , прекращаются (пологий участок характеристики рис.12.7г).

Увеличение положительного напряжения на затворе приводят к еще большему расширению запирающего слоя за счет проводящего канала (рис. 12.8б). В результате канал, проводящий ток, сужается и ток уменьшается. Очевидно, что существует такое значение , при котором ток IC = 0. Это значение называют напряжением отсечки. Таким образом, изменяя напряжение можно управлять значением тока . При этом через цепь затвора протекает только малый тепловой ток р-n перехода.

 

Тиристоры

 

Тиристор – это полупроводниковый прибор, способный под действием сигнала переходить из закрытого состояния в открытое. Благодаря этому свойству тиристоры применяются в цепях коммутации высоких мощностей и импульсных схемах информационной электроники.

Структура тиристора состоит из четырех областей полупроводника с чередующимся типом электропроводности, например n-p-n-p или p-n-p-n (рис. 12.9а). В такой структуре есть три выпрямляющих p-n перехода и три вывода. На рис. 12.9б показано схемное обозначение тиристора, где А – анод, К – катод, УЭ – управляющий электрод.

Рассмотрим процессы, происходящие в тиристоре, при прямом включении (плюс к аноду, минус – к катоду) и нулевом управляющем напряжении .

При таком включении крайние p-n переходы открыты, а средний (базовый) – закрыт. Поэтому напряжение внешнего источника в основном падает на базовом переходе, а тиристор представляет собой диод при обратном включении. Поэтому и первый участок ВАХ тиристора (рис.12.9в) похож на обратную ветвь ВАХ диода.

Под действием приложенного напряжения дырки из р области эмиттера инжектируются в n базу и втягиваются полем базового перехода в р базу. Дальнейшему продвижению дырок препятствует небольшой потенциальный барьер коллекторного р-n перехода. Поэтому часть дырок задерживается и, скапливаясь, образует избыточный положительный заряд. Этот заряд понижает высоту потенциальных барьеров базового и коллекторного переходов, а также способствует увеличению инжекции электронов из n- области коллектора в р область базы.

Поле потенциального барьера закрытого р-n перехода базы втягивает электроны в n –область базы. Скапливаясь, они также образуют избыточный заряд, снижающий потенциальные барьеры эмиттерного и базового р-n переходов.

Величина избыточных зарядов в базовых областях тем больше, высота потенциального барьера на базовом переходе тем меньше, чем больше напряжение . При некотором значении высота потенциального барьера базового перехода уменьшается до значения, соответствующего прямому включению. Сопротивление базового перехода и падение напряжения на нем резко уменьшается (участок II ВАХ), а ток скачком увеличивается. Если значение тока не ограничивать, то он может быть настолько большим, что тиристор выйдет из строя. Чтобы поддерживать тиристор в открытом состоянии, через него необходимо пропускать ток, превышающий ток выключения, соответствующий точке Б на ВАХ.

На практике включать тиристор " по аноду" для большинства типов тиристоров нежелательно из-за возможного повреждения прибора. Поэтому одну из базовых областей снабжают выводом, на который подают управляющее напряжение . Подавая положительное по отношению к коллектору напряжение, можно регулировать сопротивление базового перехода, а значит и напряжение включения (рис.9.в).

К основным параметрам тиристоров относится:

-напряжение включения ;

-максимально допустимый прямой ток;

-минимальный прямой ток через прибор в открытом состоянии;

-управляющий ток отпирания;

-управляющее напряжение отпирания;

-максимально допустимая мощность и др.

Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А, а значение напряжений в закрытом состоянии до 5 кВ.

ЭЛЕКТРОННЫЕ УСТРОЙСТВА

Лекция 22. Преобразователи напряжения (4часа)

 

Большинство электронных управляющих, измерительных, вычислительных и других устройств питаются напряжением постоянного тока. Сетевое напряжение переменное, с частотой 50 Гц одно или трехфазное. Поэтому практически каждый электронный прибор снабжен автономным преобразователем напряжения переменного тока в напряжение постоянного тока.

В общем случае преобразователь напряжения может содержать трансформатор, выпрямитель, сглаживающий фильтр и стабилизатор постоянного напряжения. Основным узлом преобразователя является выпрямитель. Принцип работы трансформатора был рассмотрен в первом разделе курса. Поэтому преобразователи напряжения начнем рассматривать с основных выпрямительных схем.

Выпрямители

 

Различают неуправляемые и управляемые выпрямители. Для построения неуправляемых выпрямителей применяют полупроводниковые диоды, а для построения управляемых - тиристоры. Схема простейшего однополупериодного выпрямителя приведена на рис. 21.1а. На рис. 21.1б приведены соответствующие этой схеме эпюры напряжения и тока.

В состав схемы входят: источник синусоидального напряжения , выпрямительный диод, и нагрузка . При анализе работы схемы будем полагать, что сопротивление диода в прямом направлении равно нулю, а в обратном - бесконечности. При таких допущениях через нагрузку протекает несинусоидальный периодический ток, в виде полуволн синусоиды:

 

i(t) =

.

 

Этот ток создает на сопротивлении падение напряжения в виде периодических пульсаций. С учетом принятых допущений амплитудное значение пульсаций равно амплитудному значению входного напряжения (рис.1в). Во время отрицательного полупериода входного напряжения все напряжение источника падает на бесконечно большом сопротивлении диода. Такое падение напряжения называют обратным напряжением диода, а выпрямитель - однополупериодным.

Рис.13.1в наглядно показывает, что период пульсаций выпрямленного напряжения Т равен периоду входного напряжения. Значит и частота пульсаций равна частоте входного напряжения f, а кратность пульсаций:

. (13.1)

 

Определим интегральные параметры выпрямленного напряжения. Среднее значение тока определим известным по лекции 2 выражением:

 

. (13.2)

Аналогично:

. (13.3)

 

Действующее значение выпрямленного тока:

 

 

. (13.4)

 

Соответственно:

. (13.5)

 

Для оценки качества выпрямленного напряжения применяют специальный параметр - коэффициент пульсаций - Кп. Он определяется отношением амплитуды первой гармоники выпрямленного напряжения (пульсаций) - к среднему значению - , т.е.

 

. (13.6)

Разложение в ряд Фурье функции, представленной рис.13.1в имеет вид:

 

 

.

 

В этом разложении первый член - постоянная составляющая - среднее значение выпрямленного напряжения, а амплитуда первой гармоники

 

.

Следовательно

 

. (13.7)

 

Таким образом, рассмотренная схема однополупериодного выпрямителя позволяет получить малые значения среднего и действующего токов и напряжений и обладает большим значением пульсаций - Кп = 1, 57.

Значительно лучшими параметрами обладает схема двухполупериодного выпрямителя, разработанная в 1901 г. академиком Миткевичем (рис.13.2а). В состав схемы входят: источник синусоидального напряжения, трансформатор с выводом от средней точки вторичной обмотки, два диода и сопротивление нагрузки - RH. Сопротивление нагрузки включено между катодами диодов и средней точкой вторичной обмотки.

 

На интервале времени от 0 до Т/2 (рис.13.2б) полярность напряжения на вторичной обмотке трансформатора такая, как показано на рис.13.2а. К диоду Д1 приложено прямое напряжение, а к диоду Д2 - обратное. В цепи вторичной обмотки потечет ток i1 от точки 1, через диод Д1, сопротивление RH к средней точке вторичной обмотки. Этот ток создаст падение напряжения (пульсацию) на интервале положительного полупериода входного напряжения.

На интервале от Т/2 до Т (отрицательный полупериод) полярность напряжения на вторичной обмотке трансформатора изменится на противоположную. Теперь к диоду Д2 приложено прямое напряжение, а к диоду Д1 - обратное. В цепи вторичной обмотки потечет ток i2 от точки 1', через диод Д2, сопротивление RH к средней точке вторичной обмотки. Направление тока через RH осталось таким же и во время положительного полупериода. Поэтому этот ток создаст падение напряжения (пульсацию) на интервале отрицательного полупериода. Именно поэтому рассматриваемый выпрямитель часто называют двухполупериодным.

Рис.13.2в наглядно показывает, что период пульсаций выпрямленного напряжения Тп в два раза меньше периода входного напряжения. Следовательно:

 

 

; ;

 

; (13.8)

 

; (13.9)

 

(13.10)

 

 

; (13.11)

 

; (13.12)

 

где

.

 

Выражения показывают, что схема Миткевича имеет значительно лучшие параметры, чем однополупериодный выпрямитель. Однако применение трансформатора с выводом от средней точки вторичной обмотки не всегда приемлемо. Свободна от этого недостатка схема мостового выпрямителя (рис.13.3). Схема включает в свой состав источник напряжения u(t), четыре диода и сопротивление нагрузки RH, которое включено в диагональ моста.

Пусть во время положительного полупериода входного напряжения полярность контактов 1 - 1' такая, как показано на рис. 13.3. В этом случае к диодам Д1 и Д4 приложено прямое напряжение, а к диодам Д2 и Д3 - обратное. В цепи выпрямителя потечет ток i1 от контакта 1, через диод Д1, сопротивление нагрузки RH, диод Д4, к контакту 1'. Этот ток создаст на сопротивлении нагрузки падение напряжения (пульсацию) на интервале положительного полупериода входного напряжения (см.рис.13.2в).

Во время отрицательного полупериода входного напряжения полярность контакта 1 - 1' меняется на противоположную. Теперь напряжение приложено к диодам Д2 и Д3, а обратное - к диодам Д1 и Д4. В цепи выпрямителя потечет ток i2 от контакта 1', через диод Д3, сопротивление нагрузки RH, диод Д2, к контакту 1. Видим, что направление тока через сопротивление RH не изменилось. Значит форма напряжения на сопротивлении RH такая как на рис.13.2в, а параметры мостового выпрямителя такие же как параметры схемы Миткевича. Однако, в силу компактности именно мостовая схема получила широкое распространение.

Сопоставление параметров одно и двухполупериодных выпрямителей позволяет установить связь между значениями кратности пульсаций m и коэффициента пульсаций Кп. Так для однополупериодного выпрямителя m = 1, а Кп = 1, 57. Для двухполупериодного выпрямителя m = 2, а Кп = 0, 67. Учитывая, что коэффициент пульсаций определяется средним значением выпрямленного напряжения U0, найдем зависимость . Для этого достаточно проинтегрировать мгновенное значение напряжения на нагрузке в пределах от -Т/2m до Т/2m (т.е. в пределах одной пульсации)

 

.

 

Заменим оператор интегрирования dt на dwt. Тогда период Т нужно заменить на 2p.

Теперь:

 

. (13.13)

 

Полученное решение показывает, что для увеличения среднего значения выпрямленного напряжения U0 (а значит для уменьшения Кп) нужно увеличивать кратность пульсаций m. Значение m> 2 можно получить в многофазных выпрямителях.

На рис. 13.4 приведена схема трехфазного однополупериодного выпрямителя. В ее состав входят трехфазный трансформатор, три диода и сопротивление нагрузки Rн. Каждая фаза вторичной обмотки трансформатора включена на общую нагрузку и соответствующий диод. Поэтому каждый диод открывается во время положительной полуволны своей фазы. Огибающая выпрямленного напряжения представляет три пульсации на интервале одного периода входного напряжения, т.е. m = 3, а:

 

 

.

 

Более эффективна мостовая схема трехфазного выпрямителя (рис.13.5). В этой схеме каждая пара диодов входит в состав двух мостов. Поэтому шесть диодов образуют три мостовые схемы для трех фаз. Огибающая выпрямленного напряжения содержит шесть пульсаций на интервале одного периода, т.е. m = 6, а:

.


 

 

Сглаживающие фильтры

 

Анализ работы рассмотренных схем выпрямителей показал, что напряжение на их выходе не постоянное, а пульсирующее. Применять такое напряжение непосредственно для питания электронных устройств нельзя. Существенно снизить уровень пульсаций позволяют сглаживающие фильтры. В основу их построения положено применение реактивных элементов - индуктивностей и емкостей.

Пульсирующее напряжение на выходе выпрямителей всегда описывается периодической функцией. Разложение такой функции в ряд Фурье содержит постоянную составляющую (среднее значение выпрямленного напряжения) и совокупность гармоник. Идеальный сглаживающий фильтр должен беспепятственно пропускать в нагрузку постоянную составляющую и не пропускать гармоники пульсаций. Для решения этой задачи и используются свойства реактивных элементов.

Известно, что сопротивление индуктивности прямо пропорционально частоте. Это значит, что для постоянной составляющей сопротивление идеальной индуктивности равно нулю, а для гармоник оно тем больше, чем выше номер гармоники. Поэтому индуктивность полезно включать последовательно нагрузке (рис., 13.6а).

Сопротивление емкости обратно пропорционально частоте. Для постоянной составляющей это сопротивление бесконечно велико, а для гармоник - мало, тем меньше чем выше номер гармоники. Поэтому емкость полезно включать параллельно нагрузке (рис.13.6б). Для повышения качества фильтрации применяются комбинированные LC фильтры, например как на рис.13.6в.

 

Рассмотрим принцип работы простейшего емкостного фильтра, сглаживающего пульсации однополупериодного выпрямителя (рис.13.7а).

 

Собственно выпрямитель (диод Д и сопротивление RH) формирует пульсации напряжения с периодом Т и амплитудным значением Um (пунктир на рис.13.7б).

Так как сопротивление емкости переменному току значительно меньше сопротивления нагрузки , то прямой ток диода на интервале пульсации протекает через конденсатор Сф, заряжая его до напряжения, близкого к Um. При уменьшении напряжения пульсации диод закрывается. Его сопротивление становится значительно больше RH. Поэтому емкость Сф начинает разряжаться через RH, а напряжение на ее обкладках уменьшается по экспоненциальному закону:

,

 

где - постоянная фильтра. В конце периода пульсаций, когда t =T

 

.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 737; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.132 с.)
Главная | Случайная страница | Обратная связь