Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Теория механизмов и машин: Конспект лекций. Общее определение машины



УДК 621.01 (075)

ББК 34.44я 73

Ф33

 

Рецензенты: А.В. Бородин, д-р техн. наук, проф., зав. кафедрой ТММ и ДМ

Омского государственного университета путей сообщения;

В.Н. Никитин, канд. техн. наук, проф. Сибирской автомобильно-

дорожной академии

 

Фёдоров Н.Н.

Ф33 Теория механизмов и машин: Конспект лекций. Омск: Изд-во ОмГТУ, 2005. 60с.

В конспекте лекций излагается основное содержание курса теории механизмов и машин, включающее структуру, кинематический, кинетостатический и динамический анализ механизмов, а также кинематику зубчатых механизмов и геометрию эвольвентного зубчатого зацепления. Предназначен для студентов дистанционной формы обучения.

 

Печатается по решению редакционно-издательского совета Омского государственного технического университета

 

 

© Н.Н. Фёдоров, 2005

© Омский государственный

технический университет, 2005

 

ОГЛАВЛЕНИЕ

Предисловие.…...… … … … … … … … … … … … … … … … … … … … … … … … … ........4

Введение.… … … … … … … … … … … … … … … … … … … … … … … … … … … … …......5

1. Структура плоских механизмов… … … … … … … … … … … … … … … … ….… ….6

1.1. Классификация плоских кинематических пар… … … … … … … … … … ….…......6

1.2. Расчёт подвижности плоского механизма… … … … … … … … … … … … …..…....8

1.3. Структурная классификация механизмов… … … … … … … … … … … … ….….....9

1.4. Замена высших пар в плоских механизмах… … … … … … … … … … … … …..… 12

1.5. Избыточные (повторяющиеся) связи и местные подвижности в механизмах. 12

2. Кинематика зубчатых механизмов… … … … … … … … … … … … … … … …........14

2.1. Понятие о передаточном отношении… … … … … … … … … … … … … … …........14

2.2. Передаточное отношение простой зубчатой передачи… … … ….… … ….… ….15

2.3. Кинематика зубчатых механизмов с неподвижными осями колёс… … … … … 16

2.4. Кинематика механизмов планетарного типа.… … … … … … … … … … … ….…..18

3. Эвольвентное зубчатое зацепление..… … … … ….… … … … … … … … … … … … 22

3.1. Основной закон зацепления.… … … … … … … … … … … … … … … … … … ….….22

3.2. Эвольвента окружности, её свойства и уравнение.… … … … … … … … … ….… 23

3.3. Элементы зубчатого колеса.… … … … … … … … … … … … … … … … … … … …..25

3.4. Элементы и свойства эвольвентного зацепления.… … … … … … … … … ….…..26

3.5. Методы изготовления зубчатых колёс… … … … … … … … … … … … … … … …..28

3.6. Геометрия реечного производящего исходного контура… … … … … … … …....29

3.7. Подрез зуба колеса и его предотвращение… … … … … … … … … … … … ….…..31

3.8. Качественные характеристики эвольвентного зацепления… … … … … ….…....33

3.9. Назначение коэффициентов смещения для нарезания зубчатых колёс….........37

3.10.Расчёт геометрических размеров зубчатых колёс… … … … … … … … … … …...37

4. Кинематика механизмов с низшими кинематическими парами… … … … ….....41

4.1. Задачи исследования; исходные данные; методы исследования...… … … ….… 41

4.2. Аналитический метод… … … … … … … … … … … … … … … … … … … … … ….....42

4.3 Метод планов положений, скоростей и ускорений.… … … … … … … … … …...43

4.4.Метод кинематических диаграмм (метод графического дифференцирования)46

5. Кинетостатика механизмов. … … … … … … … … … … … … … … … … … ….… ….47

5.1. Расчёт сил инерции. … … … … … … … … … … … … … … … … … … … … … ….….47

5.2. Общие положения силового расчёта механизмов..… … … … … … … … … ….… 50

5.3. Метод планов сил для определения реакций в кинематических парах. ….….51

5.4. Определение уравновешивающей силы способом Н.Е.Жуковского.… … …....53

6. Динамика машин.… … … … … … … ….… … … … … … … … … … … … … … … …...55

6.1. Вспомогательные задачи динамики машин.… … … … … … … … … ….… … … … 55

6.2. Характеристика режимов движения машин.… … … … … … … … … ….… … …...57

6.3. Уравнения движения машин.… … … … … … … … … … … ….… … … … … … … … 59

6.4. Назначение и приближённое определение момента инерции маховика… …...60

 

 

Предисловие

Теория механизмов и машин (ТММ) излагает научные основы создания новых машин и механизмов, методы их построения и методы теоретического и экспериментального исследования. Из-за недостатка времени, отводимого на изучение этого курса в настоящее время, и требуемого объёма материала основное внимание данного пособия сосредоточено на необходимых понятиях механики машин (другое название дисциплины) и методах теоретического исследования механизмов и машин. Основой данного конспекта является курс, который автор читал в течение многих лет на различных факультетах ОмГТУ. Основной целью преподавания курса ТММ в настоящее время автор считает дать минимально необходимый объём знаний по механике машин для того, чтобы студент - машиностроитель понимал и успешно усваивал материал специальных предметов, которые ему придётся изучать на последующих курсах университета. К сожалению, из-за вышеуказанных причин в данном конспекте мало затрагиваются разделы, посвящённые проблемам синтеза механизмов, однако автор надеется, что студент, прочитав и усвоив содержание предлагаемого материала, сумеет в случае необходимости с привлечением других источников справиться с решением возникших перед ним задач проектирования механизмов.

Для упорядочения изложения материал разбит на разделы, пронумерованные арабскими цифрами. Внутри разделов имеются более мелкие рубрики (параграфы), которые имеют двойную нумерацию – первая цифра обозначает номер раздела, а вторая – номер рубрики внутри раздела. Внутри этих рубрик могут быть ещё более мелкие подразделения. Такого порядка автор придерживается и при чтении курса.

В конце каждого раздела приводится перечень вопросов для самопроверки. Это должно помочь студенту проверить, насколько глубоко он усвоил материал, и не требуется ли его повторить, а может быть и не один раз. В случае стойкого непонимания каких-либо моментов студент может обратиться за консультацией к преподавателю.

В заключение автор выражает искреннюю благодарность студентке Любимцевой М.В., предоставившей ему свои записи лекций, и техническую помощь при оформлении материала.

 

 

Введение

Теория механизмов и машин (ТММ) изучает общие методы исследования и проектирования механизмов и машин.

Проблемы, которыми занимается ТММ, – это проблемы анализа и синтеза механизмов и машин. Анализ заключается в определении свойств существующих механизмов и машин. Это прямая задача механики машин. Обратная задачасинтез механизмов, т. е. создание новых механизмов, которые должны обладать улучшенными свойствами по сравнению с существующими с точки зрения производительности, надежности, долговечности и др.

О б щ е е о п р е д е л е н и е м а ш и н ы. Ф у н к ц и о н а л ь -

н а я к л а с с и ф и к а ц и я м а ш и н. Машина есть устройство, создаваемое человеком для использования законов природы с целью облегчения физического и умственного труда, увеличения его производительности путем частичной или полной замены человека в его трудовых и физиологических функциях.

Все существующие машины можно разделить на следующие группы:

I. Энергетические. В них происходит преобразование энергии из одного вида в другой (например, электрогенераторы, электродвигатели, двигатели внутреннего сгорания любого типа, паровые и газовые турбины и т. д.).

II. Технологические. Они предназначены для изменения формы, размеров и физических свойств материалов (металлорежущие станки, деревообрабатывающие, дорожные, строительные, полиграфические машины, машины пищевых производств, машины текстильной и лёгкой промышленности и др.). Эти машины составляют самую многочисленную группу.

III. Транспортные. Эти машины служат для перемещения всевозможных изделий, материалов и людей (автомобили, самолёты, локомотивы, суда, подъемные краны, конвейеры, манипуляторы).

IV. Логические (информационные). Машины, составляющие эту группу, служат для хранения, переработки и передачи информации (различные вычислительные устройства, ЭВМ, компьютеры в том числе ПК).

V. Кибернетические. Для замены человека в его трудовых, и физиологических функциях (аппараты искусственное сердце, искусственные почки, робот-домохозяйка и др.).

ТММ изучает те машины и механизмы, которые функционируют на основе законов механики, отсюда другое название ТММ – механика машин.

У з к о е о п р е д е л е н и е м а ш и н ы. Машина есть устройство, действующее на основе законов механики и предназначенное для преобразования энергии, материалов и информации и перемещения изделий.

Машина, как правило, состоит из одного или нескольких механизмов, основное назначение которых – преобразование движения (с одновременным преобразованием сил). Механизмом называется искусственно созданная система тел, предназначенная для преобразования движения одного или нескольких тел в требуемые движения других тел.

Твердые тела в составе механизма – звенья. Неподвижное звено механизма называется стойкой. Подвижное соединение двух звеньев, допускающее их относительное движение, называется кинематической парой.

Структура плоских механизмов

Механизм называется плоским, если все его звенья движутся параллельно одной плоскости, и траектории всех его точек – плоские кривые. В противном случае механизм пространственный.

 

Классификация плоских кинематических пар

Вопросы для самопроверки

1. Для чего применяются зубчатые механизмы?

2. Что такое передаточное отношение?

3. Какие зубчатые механизмы называют редукторами, мультипликаторами?

4. Как можно выразить передаточное отношение в паре зубчатых колёс?

5. Изобразите схему рядового, ступенчатого соединений зубчатых колёс.

5. Какая связь между передаточным отношением сложного зубчатого механизма и передаточными отношениями отдельных его ступеней?

6. Как определяется передаточное отношение в механизмах с рядовым и ступенчатым соединениями колёс?

7. Какие зубчатые механизмы являются механизмами планетарного типа (эпициклическими)?

8. В чём состоит основное достоинство механизмов планетарного типа?

9. Назовите элементы типовой схемы механизма планетарного типа.

10. Для чего и как применяется метод обращения движения?

11. Каковы особенности аналитического расчета механизмов планетарного типа различных схем?

12. На чём основан графический метод исследования кинематики зубчатых механизмов?

13. Какова особенность графического расчёта кинематики дифференциального механизма с замкнутым контуром?

 

 

Основной закон зацепления

Этот закон устанавливает связь между геометрией профилей зубьев и условиями передачи движения в зубчатом зацеплении (в более широком смысле – между геометрией элементов высшей пары и условиями передачи движения в механизме с высшей парой).

Возьмём две центроиды Ц1 и Ц2, принадлежащие колёсам 1 и 2 (рис. 3.1). Эти центроиды касаются друг друга в точке П (прописная греческая буква « пи» ), называемой полюсом зацепления.

Свяжем с центроидами профили Пр1 и Пр2 так, чтобы они касались друг друга в точке К. Относительная скорость точки К1 профиля Пр1 по отношению к совпадающей с ней точке К2 профиля Пр2, (в данный момент обе точки находятся на нормали n– n в точке K) обозначена на рис.3.1 как V отн. Докажем следующие два положения: 1). Вектор перпендикулярен нормали, в противном случае появится составляющая относительной скорости, направленная вдоль неё. Если эта составляющая будет направлена в сторону Пр2, то произойдёт внедрение профиля Пр1 в профиль Пр2, если она будет направлена в обратную сторону, то произойдёт отрыв профилей друг от друга. В обоих случаях высшая пара будет разрушена. Так что данное положение доказано.

2) Вектор перпендикулярен отрезку КП. Так как полюс П является мгновенным центром поворота центроиды Ц1 относительно центроиды Ц2, то, согласно положению теоретической механики, все точки, связанные с центроидой Ц1, имеют скорости, направленные перпендикулярно отрезку, соединяющему данную точку с центром (полюсом) поворота. Это и служит доказательством перпендикулярности вектора скорости и отрезка КП. Следует также отметить, что полюс зацепления – это не только точка касания центроид, но и точка пересечения контактной нормали профилей с линией центров колёс.

Доказанные положения позволяют сделать следующий вывод. Нормаль к профилям, проведённая в точке их касания, пересекает линию центров колёс в точке, совпадающей с полюсом зацепления, и таким образом делит межосевое расстояние центроид колёс на отрезки, обратно пропорциональные их угловым скоростям,

.

Другими словами, для правильной передачи движения с помощью высшей кинематической пары необходимо обеспечивать такую форму профилей зубьев, при которой нормаль к ним в точке контакта (контактная нормаль) проходила бы через полюс зацепления.

Из этих рассуждений следует также, что полюс зацепления – это не только точка касания центроид, но и точка пересечения контактной нормали с межосевой линией.

Профили, подчиняющиеся основному закону зацепления, называются сопряжёнными.

Следствие 1. Если полюс П занимает неизменное положение на линии центров колёс, то передаточное отношение постоянно, и радиусы центроид также постоянны. Это соответствует круглым зубчатым колёсам. В противном случае колёса некруглые.

Следствие 2. Если полюс П находится между центрами колёс, то они вращаются в противоположные стороны (внешнее зацепление колёс), и передаточное отношение имеет отрицательный знак.

Следствие 3. Если полюс П находится вне отрезка О1О2, (выше или ниже этих центров), то колёса вращаются в одну сторону (внутреннее зацепление колёс).

Следствие 4. Относительная скорость в точке касания профилей по существу является скоростью скольжения профилей зубьев. Чем дальше от полюса находится точка касания профилей, тем больше в ней скорость скольжения. Если в процессе передачи движения точка контакта профилей совпадёт с полюсом, то в этот момент скорость скольжения будет равна нулю.

Существует большое количество профилей зубьев, удовлетворяющих этому закону. При выборе формы профилей руководствуются их технологичностью (простотой изготовления), простотой инструмента и расчетов. Этим требованиям в полной мере отвечает эвольвентное зацепление.

Свойства эвольвенты

1) Нормаль к эвольвенте является касательной к основной окружности.

2) Центры кривизны эвольвенты лежат на основной окружности, так что основная окружность представляет собой эволюту, т. е. геометрическое место центров кривизны эвольвенты.

3) Радиус кривизны эвольвенты в данной точке равен отрезку производящей прямой, заключённому между данной точкой эвольвенты и точкой касания производящей прямой с основной окружностью, ρ А = AC. В точке начала эвольвенты её радиус кривизны равен нулю, ρ A0 = 0.

4) Радиус кривизны эвольвенты в данной точке равен дуге основной окружности, заключённой между точкой начала эвольвенты и точкой касания этой прямой с основной окружностью, ρ A = C0C.

5) Правая и левая ветви эвольвенты симметричны.

6) Все точки эвольвенты лежат снаружи от основной окружности.

 

Уравнение эвольвенты

Для получения уравнения эвольвенты обратимся к рис. 3.3. Положение произвольной точки Ay эвольвенты в полярной системе координат определяется двумя координатами относительно её начального радиус-вектора OA0 (или OC0): длиной радиус-вектора Ry и углом θ y. Радиус-вектор Ry определим из прямоугольного треугольника OAyCy:

Для определения полярного угла θ y сначала выразим длину дуги основной окружности через её радиус и центральный угол:

Выразим теперь противолежащий углу α y катет AyCy в ∆OAyCy:

На основании четвёртого свойства эвольвенты имеем

 

Подставляя в это равенство соответствующие выражения и решая его относительно θ y, получаем

.

В этих математических выражениях и на рис. 3.3 угол α y называется профильным углом эвольвенты. Разность между тангенсом какого-либо угла и самим углом называется эвольвентной функцией и обозначается тремя первыми буквами латинского названия эвольвенты involute, т. е. inv, так что окончательно уравнение имеет вид:

θ y = invα y.

В математических справочниках приводятся таблицы эвольвентной функции, в которых аргумент α y изменяется от нуля до нескольких десятков градусов.

 

Элементы зубчатого колеса

Здесь рассматриваются те элементы колеса, которые относятся к его ободу, где располагаются зубья (рис. 3.4).

Шаг колеса p это расстояние по делительной окружности между одноимёнными профилями двух соседних зубьев, p = π · m. Шаг включает два параметра – толщину зуба s и ширину впадины e. Если s = e, то имеем колесо с равноделённым шагом, в противном случае имеем колесо с неравноделённым шагом.

Делительная окружность (её радиус , в зацеплении двух колёс имеет индекс номера колеса):

– делит зуб на головку и ножку;

– модуль m на этой окружности имеет стандартное значение;

– радиус окружности имеет величину r = 0, 5m ;

– в точке на делительной окружности профильный угол эвольвенты α y = 20º и обозначается буквой α без индекса.

Основная окружность является базовой для образования эвольвенты (от неё начинается эвольвентная часть зуба). Радиус этой окружности получается из рассмотрения прямоугольного треугольника с углом при вершине O, равным α, и одним из катетов, равным b, и гипотенузой, равной : b = · cos α.

Окружность вершин является габаритной окружностью колеса, её радиус определяется формулой

,

где – высота головки зуба, причём . Множитель перед модулем называется коэффициентом высоты головки зуба и равен по величине 1, т. е. .

Диаметр окружности вершин является диаметром заготовки для изготовления зубчатого колеса.

Окружность впадин ограничивает зуб у основания, её радиус равен

,

где – высота ножки зуба, определяемая равенством , второе слагаемое в скобках называется коэффициентом радиального зазора и имеет величину .

Контур зуба от основной окружности до окружности вершин очерчен эвольвентой, которая сопрягается с окружностью впадин переходной кривой (эквидистантой удлинённой эвольвенты).

Свойства зацепления

1) Передаточное отношение постоянно в любой фазе зацепления, так как оно может быть выражено через радиусы основных окружностей. Для доказательства используем подобные прямоугольные треугольники (рис. 3.5) и и запишем цепочку равенств:

.

2) Передаточное отношение не зависит от изменения межосевого расстояния по той же причине, что и в предыдущем случае.

3) Правильное зацепление эвольвентных профилей происходит только в пределах линии зацепления N1N2, так как только в этих пределах контактирующие эвольвентные профили имеют общую нормаль.

4) Эвольвентные колёса одного модуля имеют полную взаимозаменяемость, т. е. могут составить правильное зацепление.

 

Методы изготовления

зубчатых колёс

Метод копирования заключается в том, что профиль зуба колеса повто­ ряет форму профиля инструмента (рис. 3.6), который, в свою очередь, теоре­ тически точно соответствует форме эвольвенты и переходной кривой зуба конкретного колеса. Инструментом могут служить дисковая или пальцевая модульные фрезы, или протяжка. Достоинством метода является возможность применения универсального обоудования (горизонтально- или вертикально-фрезерных станков), оснащенного делительной головкой для точного поворота заготовки на угловой шаг после обработки очередной впадины. Такое оборудование имеется, как правило, в ремонтной службе любого предприятия. К недостаткам следует отнести низкую точность и невысокую производительность. Кроме того, геометрия эвольвенты полностью определяется радиусом основной окружности, зависящей от модуля и числа зубьев, поэтому каждое колесо по существу должно иметь собственный инструмент для нарезания зубьев. Так как это невозможно, то применяют наборы фрез одного модуля из 8 или 15 штук. Каждая фреза набора используется для изготовления нескольких колёс с разными числами зубьев, одному из которых она обеспечивает номинально точную эвольвенту, а другие получают ошибку профиля. Ошибка получается тем больше, чем больше отклоняется число зубьев колеса от номинала. Метод обкатки (огибания) состоит в том, что профиль зуба колеса получается как огибающая ряда последовательных положений профиля инструмента (рис. 3.7).

 

 

С точки зрения кинематики движение инструмента относительно ещё ненарезанного колеса с помощью специальной цепи деления станка повторяет то движение, которое осуществляется в зубчатой передаче. Так как инструмент, по существу представляет собой зубчатое колесо с геометрией режущего инструмента, то в процессе нарезания он срезает всё, что попадает в зону движения режущих кромок, а оставшееся и представляет собой зубья колеса. Метод характеризуется высокой точностью, производительностью и, что немаловажно, позволяет инструментом одного модуля изготавливать зубчатые колёса с любым числом зубьев. К недостаткам метода можно отнести необходимость в специальном зубообрабатывающем оборудовании, однако этот недостаток с лихвой компенсируется достоинствами метода.

 

Зацепления

Коэффициент перекрытия

Коэффициентом перекрытия называется отношение длины активной линии зацепления к основному шагу зубчатого колеса, он обозначается и определяется отношением

.

Передача движения в зубчатом зацеплении происходит таким образом, что, прежде чем предыдущая пара зубьев выйдет из зацепления (из контакта), последующая должна войти в зацепление (в контакт). Чем раньше она вступит в зацепление, тем более плавно работает передача. Количественной характеристикой этого качества и является коэффициент перекрытия, т. е. он, по существу, характеризует плавность работы зубчатой передачи. Обычно величина коэффициента перекрытия заключена между 1 и 2, при этом минимальное значение не должно быть меньше 1, 1. Схематически соотношение между длиной активной лини зацепления и основным шагом показано на рис. 3.12. Точка контакта профилей зубьев перемещается вдоль активной линии зацепления от точки H1 к точке H2. Основной шаг короче активной линии зацепления, поэтому в пределах этой линии работают то одна, то две пары зубьев. Если отложить, как показано на рис. 3.12, основной шаг pb от точек H1 и H2, то отрезок H1H2 будет разделён на три части. Две крайние части соответствуют зонам двухпарного зацепления зубьев, а средняя – зоне однопарного зацепления. Чем короче средняя зона, тем плавнее работает зубчатая передача, так как суммарная длина двух крайних участков становится длиннее.

Удельное скольжение

Удельным скольжением называется отношение скорости скольжения профилей в точке их касания к скорости перемещения точки касания по профилю. Этот показатель характеризует износ зубьев в результате трения скольжения их боковых (рабочих) поверхностей. Возьмём точки К1 первого профиля и К2 второго профиля, совпадающие в данный момент друг с другом (рис. 3.13). В этих точках профили имеют общую касательную t – t, вдоль которой направлены касательные (тангенциальные) составляющие их абсолютных скоростей. В общем случае эти скорости отличаются друг от друга по величине, могут отличаться и по направлению, оставаясь на общей касательной. Разность величин этих скоростей составляет скорость скольжения в контакте зубьев.

Согласно определению, удельное скольжение выразится двумя математическими выражениями, относящимися к разным колёсам:

и .

Для определения тангенциальных составляющих скоростей обратимся к

рис. 3.14. Соединим точку К1 с центром О1 вращения колеса 1 радиусом R1, и точку К2, совпадающую с точкой К1, с центром О2 радиусом R2. Перпендикулярно радиусу R1 в сторону вращения колеса 1 отложим абсолютную скорость точки К1, равную , и перпендикулярно радиусу R2 в сторону вращения колеса 2 отложим абсолютную скорость точки К2, равную . Отметим угол β 1 между радиусом R1 и перпендикуляром O1N1 к линии зацепления и β 2 между радиусом R2 и перпендикуляром О2N2 также к линии зацепления. Спроецируем скорости и на линию зацепления N1N2. Линия зацепления направлена по нормали к профилям зубьев, поэтому проекции скоростей на неё являются нормальными составляющими, равными друг другу. Составляющие, направленные перпендикулярно линии зацепления, действуют по касательной к профилям и являются тангенциальными составляющими. Они определяются следующими цепоч-

ками преобразований

C учётом этого ранее записанные выражения примут следующий вид:

, .

В этих выражениях буквой К обозначены совпадающие друг с другом точки К1 и К2. Схематический график удельного скольжения показан на рис. 3.15.

 

График показывает, что удельное скольжение на головках зубьев меньше чем на ножках, следовательно, ножки изнашиваются интенсивнее, чем головки. Характер износа таков, что чем дальше от полюса в радиальном направлении находится зона профиля, тем больше она изнашивается. В полюсе зацепления износ от скольжения равен нулю, так как эта точка является мгновенным центром поворота одного колеса относительно другого, и точки профилей, попадающие в полюс, имеют радиус относительного вращения вокруг полюса, равный нулю.

Угол зацепления

Формулу для определения угла зацепления приведём здесь без вывода из-за его громоздкости

.

Из этой формулы, в частности, видно, что в нулевой передаче угол зацепления равен углу профиля инструмента , в положительной передаче , в отрицательной передаче всё наоборот, т.е. и соответственно .

Радиусы окружностей впадин

При образовании нулевого колеса его центроидой, как всегда, является делительная окружность (рис.3.18), а центроидой инструмента служит его делительная прямая (на рисунке профиль инструмента и его делительная прямая и прямая вершин показаны тонкими линиями). Поэтому радиус окружности впадин нулевого колеса равен разности . При смещении инструмента на величину радиус окружности впадин увеличивается на эту же величину и приобретает значение

.

На рис. 3.18 расположение инструмента по отношению к нарезаемому колесу изображено жирными линиями.

 

 

Радиусы окружностей вершин

Расчёт радиусов окружностей вершин понятен из рис. 3.19, где представлены те элементы зацепления, которые связаны с этим расчётом. Непосредственно из рисунка видно, что радиус окружности вершин первого колеса равен

 

,

радиус окружности вершин второго колеса равен

.

 

 

Вопросы для самопроверки

1. В чём заключается существо основного закона зацепления?

2. Какие профили зубьев колёс называются сопряжёнными?

3. Что такое эвольвента окружности, производящая прямая?

4. Какими свойствами обладает эвольвента окружности?

5. Что такое эвольвентная функция?

6. Назовите элементы зубчатого колеса, какими линиями очерчивается про- филь зуба?

7. Что называется шагом колеса, модулем, головкой, ножкой зуба?

8. В каком месте измеряется толщина зуба, ширина впадины колеса?

9. Какими свойствами обладает делительная окружность?

10. Что такое коэффициент высоты головки зуба, чему он равен?

11. Какая окружность колеса называется основной?

12. Назовите элементы зацепления пары колёс.

13. Что такое полюс зацепления?

14. Какие окружности колёс называются начальными?

15. Что такое угол зацепления?

16. Что такое линия зацепления, активная линия зацепления?

17. Что такое радиальный зазор, за счёт чего он образуется?

18. Сформулируйте свойства эвольвентного зацепления.

19. Какими методами изготавливают эвольвентные зубья, в чём заключается существо методов? Каковы основные достоинства и недостатки методов?

20. Что такое реечный производящий исходный контур(инструментальная рейка)?

21. Что такое подрез зубчатого колеса?

22. Какое число зубьев считается минимальным, от чего оно зависит?

23. Как предотвратить подрез зубчатого колеса?

24. Что такое коэффициент смещения исходного контура?

25. Какие зубчатые колёса называются нулевыми, положительными и отрицательными?

26. Назовите качественные характеристики эвольвентногозацепления.

27. Что называется коэффициентом перекрытия, и что он характеризует?

28. Что такое удельное скольжение, почему возникает скольжение в контакте зубьев?

29. Почему в полюсе зацепления удельное скольжение равно нулю?

30. Что такое коэффициент удельного давления, где он применяется?

31. Для чего назначаются коэффициенты смещения при нарезании зубчатых колёс?

32. Как определяются геометрические размеры зубчатых колёс: угол зацепления, радиусы начальных окружностей, межосевое расстояние, радиусы окружностей впадин, радиусы окружностей вершин и толщина зуба по делительной окружности?

 

Задачи исследования

1)Определение положений звеньев механизма и определение траекторий отдельных его точек.

2)Определение линейных скоростей точек механизма и угловых скоростей его звеньев.

3)Определение линейных ускорений точек механизма и угловых ускорений его звеньев.

Исходные данные

Для решения задач кинематики необходимо иметь

1)Кинематическую схему механизма и все кинематические размеры его звеньев.

2)Закон движения входного (ведущего) звена.

Методы исследования

1)Аналитический.

2)Графо-аналитический (метод планов положений, скоростей и ускорений).

3)Метод графического дифференцирования.

4)Экспериментальный.

Аналитический метод


Поделиться:



Последнее изменение этой страницы: 2016-05-03; Просмотров: 597; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.142 с.)
Главная | Случайная страница | Обратная связь