Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Гипоксическое повреждение клетки



ПОВРЕЖДЕНИЕ

Повреждение – это нарушение биологической структуры, приводящее к нарушению функций данной структуры. Повреждение является начальным звеном патогенеза. Может локализоваться на любом уровне развития живой материи: молекулярном, субклеточном, клеточном, тканевом, органном, системном, организменном. Повреждение может быть обратимым – модификация структуры и необратимым – деструкция структуры.

Может быть первичным – возникает под действием повреждающего фактора и вторичным – в результате ответной реакции организма на действие повреждающего фактора.

Бывает неспецифическим – повреждаются все биологические структуры, независимо от их строения и вида повреждающего фактора. (кислоты вызывают коагуляцию белка не зависимо от вида органа или ткани)

Специфическим – повреждаются конкретные биологические структуры определенным фактором. (мутагены повреждают только ДНК, холиноблокаторы действуют только на определенные рецепторы и тд)

 

ПРИЧИНЫ ПОВРЕЖДЕНИЯ:

Бывают внешние и внутренние.

ВНЕШНИЕ:

1.Физические – ионизирующая радиация, высокие и низкие температуры, механическое повреждение, электрическим током и барометрическим давлением.

2.Химическое – под действием кислот, щелочей, окислителей и реагентов.

3.Биологическое – бактерии, простейшие, вирусы, грибы.

4.Может возникать при дефиците поступления кислорода, питательных веществ, витаминов, микроэлементов, воды, электролитов.

 

ВНУТРЕННИЕ:

1.Нарушение кровообращения любой этиологии,

2.Опухоль,

3.Камни

4.Аутоиммунные реакции.

 

 

Гипоксическое повреждение клетки

 

Кислород необходим клеткам для синтеза АТФ, он является акцептором электроном в дыхательной цепи, благодаря работе которой в трансмембранном пространстве митохондрий создаётся градиент концентрации протонов водорода, необходимый для работы фермента АТФ – синтетазы. При дефиците кислорода в клетке развивается дефицит АТФ нарушение всех энергозависимых процессов.

В первую очередь страдает мембранный транспорт. Нарушается работа ионных насосов NaК и Ca –АТФазы. Насосы работают против градиента концентрации и при нарушении их работы в клетке происходит накопление натрия и кальция. Накопление натрия приводит к повышению осмотического давления и в клетку устремляется вода, происходит набухание клетки. Накопление кальция приводит к активации внутриклеточных ферментов фосфолипазы А2 и протеаз, фосфолипаза расщепляет мембраные фосфолипиды приводя к повышению проницаемости клеточной мембраны и в клетку поступает ещё больше натрия и кальция,.замыкается порочный круг. Кальций накапливается в цитоплазме клетки и начинает поступать внутрь митохондрий

При дефиците АТФ в клетке происходит нарушение синтеза белка. Белок синтезируется полисомами, связи рибосом в полисоме и с эндоплазматическим ретикулумом являются энергозависимыми. При дефиците АТФ нарушаются энергетические связи и полисомы распадаются на отдельные рибосомы.

Нарушается синтез белка. Возникает дефицит ферментов, нарушается синтез АТВ

Защитной реакцией клетки на гипоксию является активация гликолиза, в процессе которого образуется АТФ, позволяющая клетке существовать некоторое время без кислорода, но если поступление кислорода не возобновится, то гликолиз из защитной реакции превратится в повреждающую, т.к. во время гликолиза в клетке накапливается пировиноградная и молочная кислота, которые не утилизируются в ЦТК, в клетке развивается ацидоз, что приводит к повышению проницаемости мембран лизосом, активации лизосомальных ферментов и аутолизу клетки. Развивается колликвационный некроз..

 

 

СВОБОДНО – РАДИКАЛЬНОЕ ПОВРЕЖДЕНИЕ.

Свободные радикалы – это химические соединения, имеющие на внешнем электронном уровне неспареный электрон, поэтому они очень активны, вступают во взаимодействие с другими веществами, отрывая у них электроны, превращают их в свободные радикалы. Свободно – радикальная реакция является цепной и самопрогрессирующей.

Свободные радикалы в небольшом количестве образуются в организме, используются в работе дыхательной цепи в митохондриях, для синтеза простагландинов, лейкотриенов и стероидных гормонов, участвуют в реакции фагоцитоза.

Данные радикалы не оказывают повреждения, т.к. их количество чётко регулируется антиоксидантной системой организма.

 

Повреждающее действие свободных радикалов развивается при

1) Действие на организм ионизирующей радиации,

2) Отравление химическими веществами (окислители)

3) Гипоксия,

4) Воспаление,

5) Атеросклероз,

6) Старение

 

Основными свободными радикалами являются

 

ü Супероксид

ü гидроксид

ü пероксид

ü углеродные радикалы

 

МЕХАНИМ ПОВРЕЖДАЮЩЕГО ДЕЙСТВИЯ СВОБОДНЫХ РАДИКАЛОВ.

 

 

НЕКРОЗ И АПОПТОЗ

Существует две формы клеточной смерти. Насильственная форма ( убийство) – некроз, который возникает под действием внешних повреждающих факторов. Является патологической формой гибели клеток, охватывает сразу группу клеток (участок ткани), начинается с повреждения клеточных мембран, всегда сопровождается процессом воспаления. Бывает двух видов: коагуляционный – в результате действия термических или химических факторов, вызывающих коагуляцию белка. Колликвационный – в результате активации собственных протеолитических ферментов клетки и аутолиза ( самопереваривания).

Апоптоз – запрограммированная клеточная смерть ( самоубийство). Является физиологической формой смерти, протекающей без вреда или с пользой для организма. Захватывает отдельные клетки, ставшие не нужными или опасными. Всегда осуществляется с затратой энергии, через активацию специальных генов апоптоза, начинается изнутри клетки, при этом мембрана не повреждается и содержимое клетки наружу не попадает, никогда не сопровождается реакцией воспаления.

С помощью апаптоза регулируются:

1) Гибель клеток в быстро делящихся популяциях ( эпителий)

2) С помощью апоптоза происходит смена этапов эмбриогенеза,

3) Осуществляется гормональная энволюция органов,

4) Апоптозом погибают лимфоциты после прекращения антигенной стимуляции,

5) Погибают вирусные и инфекционные клетки, а также с повреждением ДНК,

 

МЕХАНИЗМЫ АПОПТОЗА.

 

В клетке существует молчащая группа генов - гены апоптоза. Их активация возникает если клетка станет ненужной или опасной для организма.

Активация возникает:

1. Если клетка перестаёт получать сигналы, регулирующие её работу (гормоны, цитокины, факторы роста).

2. Если на клетку действуют специальные вещества, запускающие апоптоз – фактор некроза опухоли.

3. Если под действием внешних факторов незначительной силы, неспособных вызвать некроз, возникает необратимые повреждения ДНК в процессе клеточного цикла клетка не должна вступать в деление.

 

Гены апоптоза активирующиеся с помощью ионов кальция через подавление веществ ингибиторов апоптоза и активацию активаторов апоптоза. На основе этих генов синтезируются ферменты каспазы и поверхностные рецепторы - интегрин.

Каспазы – ферменты, которые осуществляют все процессы, лежащие в основе апоптоза.

Основными являются:

þ Эндонуклеаза, которая фрагментирует ядро, разрезая молекулы ДНК на фрагменты, не способному к самосборке.

þ После выключения ядра активируется фермент – трансглутаминаза, которая вызывает перекрестное связывание белков цитоскелета, разделяя клетку на отсеки, каждый из которых покрыт мембраной. В дальнейшем эти отсеки отделяются друг от друга с образованием апоптозных телец, на их поверхности рецепторы ( - интегрин) для макрорфагов.

Макрофаги взаимодействуя с тельцами, при этом не выделяют медиаторов воспаления и реакция воспаления не запускается.

Диалектическая связь повреждения и реакции.

Повреждение приводит к возникновению целого ряда защитных реакций, которые возникают на различных уровнях. Эти защитные реакции направлены на устранение патологического фактора и восстановление повреждения. Защитные реакции тесно сплетены с процессами повреждения, они находятся в неразрывном единстве и составляют патологию. Три значения философии: 1. единство и борьба противоположностей, 2.переход количества в качества – за0щитные реакции чрезвычайно выражены. Становятся причин6ой повреждения.3. отрицание отрицания.

 

Лекция № 3.

Резистентность.

Это устойчивость организма к действию факторов внешней среды.

Классификация:

Пассивная и активная

Первичная и вторичная

Специфическая и неспецифическая

Местная и общая.

 

Пассивная резистентность обусловлена анатомо-физиологическими особенностями организма и не требует реактивности. Например: кости черепа защищают головной мозг от механических повреждений, ЖКТ устойчив к инфекционным возбудителям из-за наличия в желудке соляной кислоты. Люди не болеют болезнями животных из-за отсутствия рецепторов к их токсинам.

Активная резистентность - формируется благодаря механизмам реактивности. Например: устойчивость к понижению температуры благодаря сосудистым рефлексам, устойчивость к яркому свету из-за зрачкового рефлекса.

Первичная резистентность - наследственно обусловлена, включает в себя всю пассивную и часть активность (устойчивость к микроорганизмам, благодаря фагоцитозу, устойчивость к повышению температуры окружающей среды за счет расширения периферических сосудов и повышения потоотделения)

Вторичная резистентность - формируется в процессе жизни (устойчивость к инфекционным агентам после перенесённых заболеваний или вакцинации, устойчивость к физическим нагрузкам у спортсменов)

Специфическая резистентность реализуется на основе специфической реактивности, проявляется специфическим иммунитетом после вакцинации или перенесенного заболевания.

Неспецифическая резистентность - реализуется на основе неспецифической реактивности (устойчивость к холоду, голоду, боли, инфекции благодаря активации стресс-реакциий.)

Местная резистентность – устойчивость отдельных органов и систем (ЖКТ устойчив к инфекционным возбудителям из-за наличия в желудке соляной кислоты.).

Общая резистентность - устойчивость целостного организма (устойчивость к холоду, голоду, боли, инфекции благодаря активации стресс-реакциий.)

 

Мутации.

Мутации - это изменения в генетическом аппарате клеток, не связанные с обычной рекомбинацией генов во время клеточного деления.

Классификация:

1.По типу клеток:

-соматические - возникают в соматических клетках и влияют на судьбу клетки или данного организма.

-генеративные - возникают в половых клетках и влияют на судьбу потомства, приводят к развитию наследственных болезней.

2. По биологической значимости.:

-полезные - вызывают повышение адаптационных способностей особи, играют роль в эволюции.

Вредные - могут быть летальными и нелетальными.

3.По этиологии:

-спонтанные - возникают под действием случайных ошибок при репликации или под действием природных факторов.

-индуцированные - возникают в результате действия конкретных физических, химических, биологических факторов.

Физические факторы - ионизирующая радиация.

Химические факторы- все вещества из группы мутагенов.

Биологические факторы- вирусы.

Эндогенные - свободные радикалы (ПОЛ).

4.В зависимости от характера нарушений в генотипе:

-хромосомные

-генные.

Наследственные болезни по характеру мутаций:

-хромосомные

-генные.

 

Классификация хромосомных мутаций:

1.Хромосные аберрации- изменения структуры отдельных хромосом.

а) делеция - отрыв участка хромосомы.

б) дупликация- удвоение участка хромосомы.

в) инверсия- отрыв участка хромосомы, его поворот на 180 градусов и прикрепление негомологичным концом.

г) транслокация- отрыв участка хромосомы и его перенос на негомологичную хромосому.

2.Гетероплоидии - изменение количества хромосом в хромосомном наборе (трисомии, моносомии).

3.Анеуплоидии и полиплоидии - изменение количества гаплоидных наборов хромосом. Возникают только в соматических клетках, в генеративных – несовместимо с развитием беременности.

Общая характеристика хромосомных болезней.

1.Грубые системные пороки развития внутренних органов.

2.Челюстно-лицевые дисплазии.

3.Костно-мышечные аномалии.

4.Задержка физического, психического и умственного развития, умственная отсталость.

5. Половая стерильность.

Характеристика отдельных хромосомных болезней:

Гетероплоидии по аутосомам.

К ним относят: трисомии по 13, 18, 21 парам хромосом.

Трисомия по 13 паре (синдром Патау): характеризуется:

1)брахицефалическая форма черепа.

2)микро/анофтальмия

3) микро/анэнцефалия

4)расщелина твердого неба (волчья пасть) и верхней губы (заячья губа).

5) полидактилия

6) непропорциональное телосложение (короткие шея и конечности).

7) грубые системные пороки развития внутренних органов, от которых погибают, как правило, в раннем детском возрасте.

Трисомия по 18 паре (синдром Эдвардса):

1)долихоцефалическая форма черепа.

2)монголоидный разрез глаз.

3)узкая переносица (нос по типу птичьего клюва).

4)недоразвитие нижней челюсти.

5)полидактилия.

6) грубые системные пороки развития, которые становятся причиной гибели в раннем детском возрасте.

Трисомия по 21 паре (синдром Дауна):

1)брахицефалическая форма черепа.

2)антимонголоидный разрез глаз

3)седловидная переносица

4)высокое твёрдое небо.

5)большой язык.

6)короткая шея и конечности.

7)умственная отсталость.

8) грубые системные пороки развития, если они совместимы с жизнью, то в дальнейшем

9) половая стерильность..

2. гетероплоидии по половым хромосомам.

Синдром Кляйнфельтера (ХХУ - трисомия).

мужской фенотип, характеризуется высоким ростом, женским типом телосложения и отложениями жира по женскому типу, отсутствием вторичных половых признаков, гинекомастия, гипогонадизм, половая стерильность, умственная отсталость.

Синдром Шерешевского-Тернера (Х0- моносомия).

Фенотип - женский. Телосложение мужское, низкий рост, грубый голос, гипогонадизм, крыловидная складка на шее, отсутствие вторичных половых признаков, половая стерильность, пороки развития внутренних органов.

3. Хромосомные аберрации:

Синдром «кошачьего крика» (делеция короткого плеча 5 хромосомы).

Низкий рост, монголоидный разрез глаз, пороки развития гортани, заглоточного пространства другие системные пороки.

Голос напоминает кошачий крик (из-за порока развития гортани).

Транслокационная форма синдрома Дауна- перенос части 21 хромосомы на 15. Характеризуется теми же признаками, но более легким течением болезни.

Генные болезни .

Ген кодирует структуру одного белка, в зависимости от того синтез какого белка нарушается, при генной мутации различают следующие вида генных болезней.

1. Энзимопатии. Возникают в результате нарушения синтеза белков- ферментов. Это самая обширная группа генных заболеваний.

Sub→ ФПП→ Ф 1 Ф2 КП

Ферментопатии:

а) блок на уровне Sub→ ФПП. Накопление Sub и его метаболитов.

Примеры: ФКУ - в норме фенилаланин→ в тирозин под действием фермента фенилаланингидроксилазы. При ФКУ нарушается синтез этого фермента в организме, вследствие чего фенилаланин не превращается в тирозин, а накапливается в организме и превращается в фенилпируват, который оказывает токсическое действие на ЦНС, это приводи к развитию олигофрении. Если сразу же после рождения выявить это заболевание и исключить питание ребенка пищей, содержащей ФА, то умственное развитие будет нормальным.

б) блок на уровне ПП→ Ф 1 Ф2 КП. Накопление промежуточных продуктов.

Галактоземия. Галактоза→ галактозо-1-фосфат→ глюкоза, под действием фермента галактозо-1-фосфатуридилтрансферразы. Если этого фермента не синтезируется, то накапливается галактозо-1-фосфат, который оказывает токсическое действие на печень, почки, ЦНС и хрусталик. Развивается умственная отсталость, печеночная и почечная недостаточность, катаракта.

в) блок на уровне ПП→ Ф3КП. Дефицит конечного продукта.

Альбинизм: тирозин не превращается в меланин из-за отсутствия фермента тирозиназы. Полное отсутствие пигмента, белая кожа, волосы, красные глаза, высокая фоточувствительность.

Структурный блок.

При аномалии генов, кодирующих структурные белки.

Болезнь Марфана: аномалия гена, отвечающего за синтез фибрилина → нарушение структуры соединительной ткани. Проявляется повышенным ростом, подвывихами и вывихами в суставах, деформацией грудной клетки, расслойкой аорты (аневризма аорты), подвывихом хрусталика, арахнодактилией.

Синдром Элерса-Данглоса.

Аномалия коллагена в связи с тем, что в соединительной ткани преобладает эластин. Характеризуется гиперэластичностью кожи, повышенной растяжимостью, разболтанностью суставов, аневризма аорты.

Болезнь Рандю-Остлера:

Аномалия коллагена сосудистой стенки→ истончение базальной мембраны сосудов, их расширение с образованием телеангиоэктазий, что сопровождается геморрагическим синдромом, анемией.

Транспортный блок.

В результате нарушения структуры генов, кодирующих транспортные белки.

Рецепторный блок.

Возникает при нарушении генов, кодирующих структуру клеточных рецепторов.

Несахарный диабет.

В почках отсутствует рецептор к антидиуретическому гормону, что → к нарушению реабсобрции воды, полиурии и дегидратации.

Патология внутриутробного развития.

Возникает в результате воздействия на организм матери повреждающих факторов во время беременности, или в результате заболеваний матери. Особенности патологии внутриутробного периода зависят от характера повреждающего фактора и периода внутриутробного развития в который действует повреждающий фактор.

 

 

Периоды внутриутробного развития:

Оплодотворение и преимплантация ( 1 – 6 день).

Имплантация ( 6 – 12 день)

Бластогенез ( первые 2 недели)

Эмбриогенез ( по 12 неделю) ранний ( до 6 недели)

Поздний ( до 12 недели)

Фетальный (13 неделя – 40 неделя) ранний ( до 29 недели)

поздний ( с 29 недели – роды 40 неделя)

В периоды преимплантации, имплантации и бластогенеза действует закон «все или ничего». Либо беременность прерывается, либо действующий неблагоприятный фактор не вызывает повреждения и беременность развивается нормально. В ранний эмбриональный период тоже чаще всего действует закон «все или ничего». В поздний эмбриональный период развиваются грубые системные пороки развития.

В ранний фетальный период развиваются пороки развития ЦНС (гидроцефалия, микроцефалия)

В поздний фетальный период ребенок полностью сформирован, пороков развития не бывает, но возникают инфекционные и неинфекционные фетопатии.

Гаметопатии- патология половых клеток. Может сопровождаться повреждением ДНК, тогда проводит к развитию наследственных болезней. Может сопровождаться нарушением подвижности сперматозоидов или их способности к оплодотворению, тогда беременность не возникает.

 

Эмбриопатии

2-6 неделя - ранние эмбриопатии, характеризуются множественными грубыми системными пороками развития которые обычно не совместимы с внутриутробным развитием и приводят к выкидышам.

5-12 неделя - позние эмбриопатии приводят к системным порокам развития внутренних органов.

Фетопатии

13-28 неделя – раннии фетопатии проявляются пороками развития ЦНС (гидроцефалия) либо изолированными пороками развития внутренних органов.

29-40 неделя- поздние фетопатии - ребенок полностью сформирован, пороков развития не бывает, но возникают инфекционные и неинфекционные болезни.

Инфекционные фетопатии – проявляются врожденными инфекционными болезнями (врожденный сифилиз, врожденный токсоплазмоз, врожденный гепатит и тд)

Неинфекционные фетопатии – гипоксия, гипотрофия, эндокринопатии, гемолитическая болезнь новорожденных (резус-конфликт) и т.д.

 

Гаметопатии – патология половых клеток. Может сопровождаться повреждением ДНК, тогда возникают наследственные болезни. Может сопровождаться нарушением подвижности сперматозоидов или их способности к оплодотворению, тогда беременность не наступает.

Эмбриопатии

Ранние эмбриопатии -2-6 неделя беременности - сопровождаются множественными грубыми системными пороками развития которые обычно несовместимы с внутриутробным развитием и приводят к выкидышам.

Поздние эмбриопатии 6-12 неделя – сопровождаются множественными системными пороками развития внутренних органов.

Фетопатии

Ранние фетопатии 13-28 неделя – проявляются пороками развития ЦНС, либо изолированными пороками развития отдельных органов.

Поздние фетопатии 29-40 неделя ребенок полностью сформирован, пороков развития не бывает, но могут возникать инфекционные и неинфекционные болезни.

Инфекционные фетопатии – проявляются врожденными инфекционными болезнями (врожденный сифилиз, токсоплазмоз, цитомегаловирусная инфекция, гепатит)

Неинфекционные фетопатии – гипоксия, гипотрофия, эндокринопатии, гемолитическая болезнь новорожденных(резус-конфликт)

ЛЕКЦИЯ № 6.

 

ТЕМА: ПАТОЛОГИЯ КИСЛОТНО – ОСНОВНОГО СОСТОЯНИЯ ( КОС).

Под КОС понимают отношение между поступлением в организм, образованием и выведением из организма кислот и оснований.

Кислоты – это соединения, которые в реакциях являются донорами протонов водорода.

Основания – это соединения, которые являются акцепторами протонов водорода.

КОС определяют по pH крови. рН – это отрицательный десятичный логарифм концентрации протонов водорода. При увеличении рН повышается щелочность раствора, развивается алкалоз, при уменьшении рН увеличивается кислотность раствора, развивается ацидоз.

В норме (при стандартных условиях) рН артериальной крови: 7, 37 – 7, 43.

Изменение рН на 0, 1 приводит к грубым нарушениям жизненно важных функций. Изменение на 0, 3 не совместно с жизнью. Поэтому в организме существуют мощные регуляторные системы, отвечающие за поддержание рН крови. Регуляция КОС осуществляется при участии буферных систем крови и органов утилизации и выделения кислот и оснований.

БУФЕРНЫЕ СИСТЕМЫ КРОВИ.

Буферная система – раствор слабо диссоциируемой кислоты и сопряжённого с ней, хорошо растворимого, основания.

НА Н+ + А-

Буферные системы подчиняются закону действующих масс. При повышении концентрации кислоты происходит повышение скорости прямой реакции, т.е усиливается диссоциация. При повышении концентрации оснований возрастает скорость обратной реакции. Т.е. в растворе устанавливается равновесие между содержанием кислоты и оснований.

К буферным системам крови относят:

1.Бикарбонатная буферная система – 53% буферной емкости крови

Представлен слабо диссоциируемой угольной кислотой и сопряженным с ней основанием бикарбонатом

СО2 + Н2О Н2СО3 Н+ + НСО-3

2. Белковая буферная система

Представлена альбуминами и гемоглобином, которые могут связывать протоны превращаясь в кислоту и отдавать протоны превращаясь в основания (протеинаты)

PtH H+ + + Ht

 
 


AlH H+ + Al- 7 -10% альбуминовая буферная система

HbH H + + Hb- 35% гемоглобиновая буферная система

 

протеинаты

 

3.Фосфатная буферная система - 5% буферной емкости крови

Представлена одноосновным (кислота) и двухосновным (основание) фосфат анионами.

Н2 РО4 -- Н+ + НРО4 2—

БУФЕРНЫЕ ОСНОВАНИЯ КРОВИ.

Под буферными основаниями крови (ВВ) понимают совокупность анионов всех буферных систем крови, но учитывая, что ёмкость фосфатного буфера низкая, фосфат – анионами пренебрегают. Т.о буферные основания крови – это совокупностью бикарбоната и протеинатов крови. В норме содержание буферных оснований 48±2, 5 ммоль/л. ±2, 5 ммоль/л называют сдвигом буферных оснований (ВЕ).

Особенность ВВ в том, что их концентрация не меняется при изменении напряжения СО2 в крови, поэтому по изменениям концентрации буферных оснований можно судить о наличии нереспираторных нарушений КОС.

ОРГАНЫ УЧАСТВУЮЩИЕ В РЕГУЛЯЦИИ КОС.

1. Дыхательная система участвует в регуляции КОС, изменяя напряжения СО2 в крови. Тесно связана с бикарбонатным буфером. При снижении частоты дыхания увеличивается концентрация СО2 в крови, что приводит к повышению концентрации Н2СО3 , развивается ацидоз. При повышении частоты дыхания снижается напряжение СО2, сжижается количество Н2СО3 , развивается алкалоз.

2.Почки. Участвуют в регуляции КОС, т.к осуществляют реабсорбцию бикарбоната, секрецию протонов водорода и экскрецию с мочой нелетучих кислот и оснований.

МЕХАНИЗМЫ:

Под действием карбоангидразы происходит реабсорсбция Na и бикарбоната, и секреция с выведением из организма Н+.

Под действием альдостерона происходит реабсорбция Na и секреция ионов калия и водорода.

Переход однозамещённых фосфатов в двухзамещённые, при этом связываются ионы водорода.

Ионы водорода связываются в процессе аминоацидгенеза.

В процессе образования иона аммония ( аммонийацидгенез)

3.ЖКТ.

В желудке происходит секреция ионов водорода и хлора в обмен на всасывание бикарбоната. В кишечнике секреция бикарбоната и всасывается соляная кислота. В норме этот процесс в равновесии, но при изолированной потере или желудочного или кишечного сока могут возникать нарушения КОС.

4.Печень.

Утилизирует молочную кислоту и аминокислоты, поступающие из ЖКТ.

Выводит в составе желчи нелетучие кислоты и основания.

Инактивирует аммиак.

Синтезирует альбумины (компоненты буферной системы)

Инактивирует альдостерон

 

5.Кожа. При нарушении функции почек может в незначительном количестве в составе пота выводить кислоты и основания.

 

Классификация нарушений КОС.

1. Ацидоз - сдвиг в кислую сторону

2.Алкалоз – сдвиг в щелочную сторону

1. Респираторные нарушения КОС

2. Нереспираторные нарушения КОС

 

Нереспираторный ацидоз бывает: экзогенным, метаболическим и экскреторным

Нереспираторный алкалоз бывает: экзогенным и экскреторным (метаболического нет, т.к. щелочи в организме не накапливаются)

Выделяют простые нарушения КОС, смешанные формы и комбинированные формы

Смешанные формы показывают на то, что в организме запускаются механизмы компенсации

Бывают 4 типов.

Первичный респираторный ацидоз и вторичный нереспираторный алкалоз

Первичный нереспираторный ацидоз и вторичный респираторный алкалоз

Первичный респираторный алкалоз и вторичный нереспираторный ацидоз

Первичный нереспираторный алкалоз и вторичный респираторный ацидоз.

 

Нормы КОС

РН крови 7, 4±0, 05

Напряжение CO2 40 ±5 мм.рт. ст.

ВВ (буферные основания крови) 48±2, 5ммоль/л

ВЕ (сдвиг буферных оснований) ±2, 5ммоль/л

SB (стандартный бикарбонат) 24±3ммоль/л

рН 7, 35 7, 4 7, 45

 

ацидоз алкалоз

 

7, 35 – 7, 4 – компенсированный ацидоз

7, 35 – декомпенсированный ацидоз

7, 4 – 7, 45 – компенсированный алкалоз

7, 45 – декомпенсированный алкалоз

 

 

N

35 40 45

СО2

 

Респираторный алкалоз респираторный ацидоз

 

-2, 5 0 +2, 5

ВЕ

 

Нереспираторный ацидоз нереспираторный алкалоз

 

РЕСПИРАТОРНЫЙ АЦИДОЗ.

Характеризуется повышением в крови напряжения СО2 более 45 мм.рт.ст. Может возникать при нарушении внешнего дыхания ( нарушение альвеолярной вентиляции, диффузии газов в лёгких, перфузии крови по сосудам лёгких), при дыхании воздухом, содержащим высокие концентрации СО2 (герметически закрытые помещения (под завалами), неисправный наркозный аппарат).

При данном нарушении из- за неспособности дыхательной системы обеспечить нормальное напряжение СО2 компенсацию берут на себя почки, за счёт повышения реабсорбции бикарбоната и секреции протонов водорода. Увеличение реабсорбции бикарбонатов приводит к увеличению содержания буферных оснований в крови. При этом сдвиг буферных оснований становится более 2, 5 ммоль/л, развивается смешанная форма нарушений КОС, когда первичный респираторный ацидоз компенсируется вторичным нереспираторным алкалозом.

НЕРЕСПИРАТОРНЫЙ АЦИДОЗ.

Характеризуется смещением сдвига буферных оснований меньше -2, 5 ммоль/л.

Выделяют 3 формы:

Экзогенный ацидоз- при увеличенном поступлении в организм кислот (отравление кислотами, избыточный прием кислых продуктов - пища, лекарственные препараты)

Метаболический ацидоз - при усиленном образовании кислот. Может быть лактатацидоз ( молочная кислота накапливается при гипоксии и чрезмерных физических нагрузках) и кетоацидоз ( кетоновые тела накапливаются при голодании и сахарном диабете)

Экскреторный ацидоз – при нарушение выведения кислот или при повышенной потере щелочей. Нарушение выведения кислот из организма может быть вызвано нарушением функции почек, эндокринной системы ( гипокортицизм, гипоальдеростенизм, почечная недостаточность), потеря щелочей происходит с кишечным соком ( при диарее, фистулах ЖКТ).

Компенсация осуществляется за счет увеличения частоты дыхания, при этом уменьшается напряжение СО2 в крови ниже 35 мм.рт.ст. и развивается смешанная форма, когда первичный нереспираторный ацидоз компенсируется вторичным респираторным алкалозом.

КОМБИНИРОВАННЫЙ АЦИДОЗ.

Наблюдается при сочетании респираторного и нереспираторного ацидоза. Напряжение СО2 в крови выше 45 мм.рт.ст, а сдвиг буферных оснований меньше -2, 5 ммоль/л. Компенсация затруднена, поэтому комбинированный ацидоз обычно декомпенсированный.

 

НАРУШЕНИЯ В ОРГАНИЗМЕ ПРИ АЦИДОЗЕ.

Расширение сосудов и увеличение их проницаемости приводит к отёку лёгких и головного мозга;

Гиперкальциемия и гиперкалиемия ( нарушение работы сердца приводит к брадикардии вплоть до остановки сердца ); снижение чувствительность адренорецепторов к катехоламинам сопровождается гипотензией, спазм бронхиол и гиперсекреция слизи приводит к обструкции бронхов и гипоксии.

 

РЕСПИРАТОРНЫЙ АЛКАЛОЗ.

Возникает при снижении напряжения СО2 в крови ниже 35 мм.рт.ст. Причины: гипервентиляция ( при горной болезни, при раздражении дыхательного центра, при неправильно проведённой искусственной вентиляции лёгких). Компенсация за счёт почек: снижается реабсорбция бикарбоната и секреция Н+. Снижение реабсорбции бикарбоната приводит к смещению сдвига буферных оснований меньше -2, 5 ммоль/л. Развивается смешанная форма нарушения КОС, когда первичный респираторный алкалоз компенсируется вторичным нереспираторным ацидозом.

 

НЕРЕСПИРАТОРНЫЙ АЛКАЛОЗ.

 

Развивается при увеличении в крови сдвига буферных оснований больше 2, 5 ммоль/л.

Бывает:

Экзогенный алкалоз - при повышенном поступлении в организм щелочей (при отравлении щелочами, при избыточном приёме щелочных растворов для купирования изжоги).

Экскреторный алкалоз - при усиленной потери из организма кислот. Через ЖКТ при неукротимой рвоте, через почки при гиперальдестронизме, гиперкортицизме, гипофункции паращитовидных желёз.

Компенсация при нереспираторном алкалозе осуществляется за счёт снижения частоты дыхания, при этом напряжение СО2 в крови становится больше 45 мм.рт.ст, развивается смешанная форма, когда первичный нереспираторный алкалоз компенсируется вторичным респираторным ацидозом.

 

КОМБИНИРОВАННЫЙ АЛКАЛОЗ.

Сочетание респираторного и нереспираторного алкалоза. Является самой редкой и тяжёлой формой нарушения КОС, всегда декомпенсирован. При этом напряжение СО2 в крови меньше 35 мм.рт.ст, а сдвиг буферных оснований больше 2, 5 ммоль/л.

 

НАРУШЕНИЯ В ОРГАНИЗМЕ ПРИ АЛКАЛОЗЕ.

Возникает спазм сосудов, в том числе и головного мозга, что приводит к гипоксии ЦНС. Развивается гипокалиемия, приводящая к аритмии и тахикардии, гипокальциемия приводящая к судорогам, тетании, ларингоспазму и асфиксии.

 

НАРУШЕНИЕ ВОДНО- ЭЛЕКТРОЛИТНОГО ОБМЕНА.

Все процессы протекают в водной среде. В в организме взрослого человека содержится от 57 – 60% воды. Вся жидкость делится на внутриклеточную (2/3) и внеклеточную (1/3). Внеклеточная жидкость представлена кровью, лимфой, интерстициальной жидкостью, трансцеллюлярной жидкостью, к которой относится спинномозговая жидкость, внутриглазная, внутрисуставная, жидкость серозных полостей и ЖКТ.

Электролитный состав внутри и вне клетки отличается. Внутри – К+, фосфаты, мало натрия, хлоридов, бикарбонаты, кальция. Во внеклеточной много натрия, хлоридов, мало калия и кальция.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-03; Просмотров: 1525; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.193 с.)
Главная | Случайная страница | Обратная связь