![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Определение отдельных параметров синхронных генераторов, компенсаторов и электродвигателей
В тех случаях, когда отсутствуют данные о каких-либо параметрах синхронных машин, необходимые для расчета токов КЗ с учетом переходных процессов в машинах, значения этих параметров целесообразно определять, используя данные о других параметрах и известные соотношения между соответствующими параметрами синхронных машин. Если неизвестны индуктивное сопротивление рассеяния обмотки статора синхронной машины, а также индуктивные сопротивления ОВ и продольного демпферного контура, то их можно определить, принимая допущение, что они одинаковы. При этом условии сопротивление взаимоиндукции между обмоткой статора и контурами ротора по продольной оси равно
где
Найденное значение
и
где
Если задано отношение КЗ значение синхронное индуктивное сопротивление по продольной оси можно рассчитать по выражению
где Е*=(1, 05¸ 1, 2), относительное значение ЭДС при Если активные сопротивления обмоток статора и возбуждения синхронной машины даны при температуре, отличной от рабочей
где
В случае если нет данных об активном сопротивлении обмотки статора синхронной машины, это сопротивление следует определять в относительных единицах при номинальных условиях по формуле
где
При расчете токов КЗ с учетом переходных процессов в синхронной машине активное сопротивление обмотки возбуждения следует приводить к обмотке статора. Приведенное сопротивление в относительных единицах при номинальных условиях машины рекомендуется определять по формуле
где
Влияние и учет нагрузки
В установившемся режиме КЗ нагрузка может существенно изменить величины и распределение токов в схеме. В нагрузочном режиме генератор имеет большее возбуждение, чем на холостом ходу и влияние нагрузки проявляется именно в этом случае. Рассмотрим простейший пример по схеме на рисунке 3.1. В режиме КЗ нагрузка шунтирует поврежденную ветвь и уменьшает внешнее сопротивление цепи статора. Это приведет к увеличению тока генератора и уменьшению его напряжения. Соответственно пропорционально этому уменьшится ток в месте короткого замыкания. Если КЗ удаленное, то влияние нагрузки более выраженное. Если КЗ происходит на выводах генератора, то присоединенная нагрузка не играет никакой роли.
Рисунок 3.1 –Нагрузка в цепи генератора
Промышленная нагрузка преимущественно состоит из асинхронных двигателей. Зависимость напряжения от скольжения нелинейная, что усложняет точный учет нагрузки и в основном она учитывается приближенно. Для практических расчетов она учитывается некоторой постоянной реактивностью. Допустим генератор с ЭДС Еq работает на некоторую чисто индуктивную цепь с реактивностью ХВН. Для определения его напряжения можно воспользоваться выражениями
и
Выражение (3.8) представляет собой внешнюю характеристику генератора, на рисунке 3.2 это прямая FM. Выражение (3.2) представляет собой на рисунке 3.2 прямую ОР, наклон которой пропорционален реактивности цепи статора
Из (3.10)видно, что величина нагрузки зависит от параметров генератора, причем влияние коэффициента мощности сказывается в скрытом виде, через значение Eq. При средних значениях параметров типовых генераторов, работающих с полной нагрузкой при соsj=08, относительная величина реактивности нагрузки после округления результатов составляет хНАГР=1, 2. В соответствии с указаниями к расчету токов КЗ, следует учитывать влияние каждой комплексной нагрузки, если ток в месте КЗ от той нагрузки составляет не менее 5 % тока в месте КЗ, определенного без учета нагрузки. В общем случае ток КЗ от комплексной нагрузки следует определять как геометрическую сумму токов от отдельных ее элементов. В приближенных расчетах допускается эквивалентирование комплексной нагрузки с представлением ее в виде эквивалентной ЭДС и эквивалентного сопротивления. Эквивалентное сопротивление прямой (обратной) последовательности
где - Si - полная установленная мощность i-го потребителя нагрузки, кВ× А.
Метод расчета тока КЗ от комплексной нагрузки зависит от характера исходной схемы замещения узла и положения точки КЗ, рисунок 3.2а. При радиальной расчетной схеме, рисунок 3.2б, допускается не учитывать влияние статических потребителей (преобразователей, электротермических установок и другие). Начальное значение периодической составляющей тока КЗ, ударный ток, а также периодическую составляющую тока КЗ в произвольный момент времени следует рассчитывать с учетом подпитки от синхронных и асинхронных электродвигателей. При КЗ за общим сопротивлением для различных потребителей узла нагрузки, рисунок 3.3а, начальное значение периодической составляющей тока трехфазного КЗ рекомендуется определять с учетом влияния двигательной и статической нагрузки, используя выражение
где
Рисунок 3.2 –Схемы включения нагрузки в цепь КЗ а) расчетная схема, б) схема замещения
Действующее значение периодической составляющей тока КЗ в произвольный момент времени с учетом электродвигателей и статической нагрузки узла рекомендуется определять как
где
При КЗ за общим сопротивлением для узла нагрузки и системы, рисунок 3.3б, начальное значение периодической составляющей тока в точке трехфазного КЗ следует определять по формуле
где
а) б) Рисунок 3.3 – Схемы замещения с нагрузкой
Начальное значение периодической составляющей тока КЗ от узла нагрузки
где
Значение периодической составляющей тока КЗ в произвольный момент времени от узла нагрузки следует рассчитывать с учетом влияния электродвигателей по расчетным кривым.
Популярное:
|
Последнее изменение этой страницы: 2016-05-28; Просмотров: 1094; Нарушение авторского права страницы