Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вопрос. Процесс построения модели
Процесс построения модели. Построение модели — это процесс, имеющий определенные основные этапы [32]. Постановка задачи. Первый и наиболее важный этап построения модели, способный обеспечить правильное решение управленческой проблемы, состоит в постановке задачи. Правильное использование математики или компьютера не принесет никакой пользы, если сама проблема не будет точно диагностирована. Как заметил К. Э. Шеннон: «Альберт Эйнштейн однажды сказал, что правильная постановка задачи важнее даже, чем ее решение. Для нахождения приемлемого или оптимального решения задачи нужно знать, в чем она состоит. Как ни просто и прозрачно данное утверждение, чересчур многие специалисты в науке управления игнорируют очевидное. Миллионы долларов расходуются ежегодно на поиск элегантных и глубокомысленных ответов на неверно поставленные вопросы». Из того только, что руководитель осведомлен о наличии проблемы как таковой, вовсе не следует факт идентификации истинной проблемы. Руководитель обязан уметь отличать симптомы от причин. Рассмотрим для примера фармацевтическую компанию, получавшую множество жалоб от аптек на задержки с выполнением их заказов. Истинная проблема была, как оказалось, не в самой задержке. Изучение вопроса показало, что заказы задерживаются из-за производственных затруднений на трех химических предприятиях фирмы, вызванных нехваткой исходных химических реагентов и запасных частей к оборудованию, что в свою очередь было обусловлено некачественным прогнозированием потребности в материалах и запасных частях. Построение модели. После правильной постановки задачи следующий этап процесса — построение модели. Разработчик должен определить главную цель модели, а также какие выходные нормативы или информацию предполагается получить, используя модель, чтобы помочь руководству разрешить стоящую перед ним проблему. Если продолжить приведенный выше пример, нужная выходная информация должна представлять точные нормативы времени и количества подлежащих заказу исходных материалов и запасных частей. В дополнение к постановке главных целей специалист по науке управления должен определить, какая информация требуется для построения модели, удовлетворяющей этим целям и выдающей на выходе нужные сведения. В нашем случае необходимой информацией будет точный прогноз потребности по каждому исходному реагенту, сведения о характере закупаемых материалов для каждого вида продукции, ожидаемой долговечности деталей оборудования, сроке службы каждой детали и т.п. Может случиться, что эта необходимая информация разбросана по многим источникам. К другим факторам, требующим учета при построении модели, следует отнести расходы и реакцию людей. Модель, которая стоит больше, чем вся задача, требующая решения с помощью модели, конечно, не внесет никакого вклада в достижение целей организации. Подобным образом, излишне сложная модель может быть воспринята конечными пользователями как угроза и отвергнута ими. Таким образом, для построения эффективной модели руководителям и специалистам по науке управления следует работать вместе, взаимно увязывая потребности каждой стороны. Проверка модели на достоверность. После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить, всели существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения. Однако модель не должна быть сложной в использовании. Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству решить проблему. Продолжим наш пример. Если модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно считать полезной, поскольку выходная информация позволит руководству принять эффективные корректирующие меры в отношении задержек поставок. Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если бы ее удалось получить) помочь в разрешении производственных трудностей и ликвидации задержек. Применение модели. После проверки на достоверность модель готова к использованию. Это кажется очевидным, но зачастую этот этап оказывается одним из самых тревожных моментов построения модели. Согласно обследованию отделов, анализирующих операции на корпоративном уровне, лишь около 60 % моделей науки управления были использованы в полной или почти полной мере. В других обследованиях также установлено, что финансовые руководители американских корпораций и западно-европейские управляющие маркетингом недостаточно широко используют модели для принятия решений. Основная причина недоиспользования моделей руководителями, возможно, заключается в том, что они их опасаются или не понимают. Если модели науки управления создаются специалистами штабных служб (а так обычно и бывает), линейные руководители, для которых они предназначены, должны принимать участие в постановке задачи и определении требований по информации, получаемой благодаря модели. Согласно исследованиям, когда это имеет место, применение моделей увеличивается на 50 %. Кроме того, руководителей следует научить использовать модели, объяснив среди прочего, как модель функционирует, каковы ее потенциальные возможности и ограничения. Обновление модели. Даже если применение модели оказалось успешным, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных неясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на критерии принятия решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении, например появление но- пых потребителей, поставщиков или технологии, может обесценить допущения и исходную информацию, на которых основывалась модель при построении. Этапы процесса экономико-математического моделирования. Перейдем теперь непосредственно к процессу экономико-математического моделирования, т.е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования, поэтому целесообразно более детально проанализировать последовательность и содержание его этапов [52]. Постановка экономической проблемы и ее качественный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта. Построение математической модели. Это этап формализации экономической проблемы, т.е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Процесс построения модели проходит в свою очередь несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей. При этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агре гированно и приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решения. В частности, важный момент —доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т.д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В таких случаях переходят к численным методам исследования. Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации. Кроме того, надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других. Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительную трудность составляет большая размерность экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей — единственно возможное. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели, поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Другими словами, должны быть произведены верификация (проверка правильности структуры модели) и ее валидация (проверка соответствия данных, полученных на основе модели, реальному процессу). Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели. В этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации. Выше уже было сказано о циклическом характере процесса моделирования. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в последующих циклах. Однако результаты каждого цикла имеют и вполне самостоятельное значение. Можно начать исследование с построения простой модели и, получив полезные результаты, перейти затем к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости. Вопрос. Классификация экономико-математических моделей.
Первая классификация экономико-математических моделей была приведена в монографии Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» в 1971 г. (рис 3.2) [10]:
Однако и в настоящее время единой системы классификации моделей не существует. Обычно выделяют более десяти основных признаков их классификации [1, 10, 14, 22, 41, 52]. Обобщенно классификация экономико-математических моделей представлена в табл.
Рассмотрим выделенные классификационные признаки подробнее. По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления. По степени агрегирования объектов моделирования модели делятся на макроэкономические и микроэкономические, хотя между ними и нет четкого разграничения. К первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы. По конкретному предназначению, т. е. по цели создания и применения, выделяют: ■ балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; ■ трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; ■ оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; ■ имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов, и др. По типу информации, используемой в модели, экономико-математи- ческие модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации. По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и динамические, описывающие экономические системы в развитии. По учету фактора неопределенности модели делятся на детерминированные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора. По типу математического аппарата, используемого в модели, т.е. по характеристике математических объектов, включенных в модель, могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д. По типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получают модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений. В качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, атем, как она должна быть устроена и как должна действовать согласно определенным критериям. Проблемы моделирования. Как все средства и методы, модели науки управления в случае их применения могут привести к ошибкам. Эффективность модели иногда снижается действием ряда потенциальных погрешностей. Недостоверные исходные допущения. Любая модель опирается на некоторые исходные допущения, или предпосылки. Это могут быть поддающиеся оценке предпосылки, например то, что расходы на рабочую силу в следующие шесть месяцев составят 200 тыс. долл. Такие предположения можно объективно проверить и просчитать. Вероятность их точности будет высока. Некоторые предпосылки не поддаются оценке и не могутбыть объективно проверены. Предположение о росте сбыта в будущем году на 10 % — пример допущения, не поддающегося проверке. Никто не знает наверняка, произойдет ли это действительно. Поскольку такие предпосылки — основа модели, точность последней зависит от точности предпосылок. Модель нельзя использовать для прогнозирования, например, потребности в запасах, если неточны прогнозы сбыта на предстоящий период. В дополнение к допущениям по поводу компонентов модели руководитель формулирует предпосылки относительно взаимосвязей внутри нее. К примеру, модель, предназначенная помочь решить, сколько галлонов краски разных типов следует производить, должна, вероятно, включать допущение относительно зависимости между продажной ценой и прибылью, а также стоимостью материалов и рабочей силы. Точность модели зависит также от точности этих взаимосвязей. Информационные ограничения. Основная причина недостоверности предпосылок и других затруднений — ограниченные возможности в получении нужной информации, которые влияют и на построение, и на использование моделей. Точность модели определяется точностью информации по проблеме. Если ситуация исключительно сложна, специалист по науке управления может быть не в состоянии получить информацию по всем релевантным факторам или встроить ее в модель. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но это может быть нереализуемо или непрактич'но. Иногда при построении модели игнорируются существенные аспекты, поскольку они не поддаются измерению. Например, модель определения эффективности новой технологии будет некорректной, если в нее встроена только информация о снижении издержек в соответствии с увеличением специализации. В общем, построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая информация настолько неопределенна, что ее трудно получить исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и помощь консультантов. Страх пользователей. Модель нельзя считать эффективной, если ею не пользуются. Основная причина неиспользования модели заключается в том, что руководители, которым она предназначена, могут не вполне понимать получаемые с помощью модели результаты и потому боятся ее применять. Для борьбы с этим возможным страхом специалистам по количественным методам анализа следует значительно больше времени уделять ознакомлению руководителей с возможностями и порядком использования моделей. Руководители должны быть подготовлены к применению моделей, а высшему руководству следует подчеркивать, насколько успех организации зависит от моделей и как они повышают способность руководителей эффективно планировать и контролировать работу организации. Слабое использование на практике. Согласно ряду исследований уровень методов моделирования в рамках науки управления превосходит уровень использования моделей. Как указывалось выше, одна из причин такого положения дел — страх. Другими причинами могут быть недостаток знаний и сопротивление переменам. Данная проблема подкрепляет желательность того, чтобы на стадии построения модели штабные специалисты привлекали к этому пользователей. Когда люди имеют возможность обсудить и лучше понять вопрос, метод или предполагаемое изменение, их сопротивление обычно снижается. Чрезмерная стоимость. Выгоды от использования модели, как и других методов управления, должны с избытком оправдыватьее стоимость. При установлении издержек на моделирование руководству следует учитывать затраты времени руководителей высшего и низшего уровней на построение модели и сбор информации, расходы, время на обучение, стоимость обработки и хранения информации. Основные модели, используемые для разработки управленческих решений. Существует огромное множество конкретных моделей, используемых лля разработки управленческих решений. Их число так же велико, как и число проблем, для разрешения которых они были разработаны [1, 10, 14, 22, 41, 52]. В общем виде в составе экономико-математических моделей можно выделить следующие: ■ модели линейного программирования; ■ оптимальные экономико-математические модели (имитационные модели, модели сетевого планирования и управления); ■ модели анализадинамики экономических процессов; ■ модели прогнозирования экономических процессов (трендовые модели на основе кривых роста, адапти иные модели прогнозирования); ■ балансовые модели; ■ эконометрические модели; ■ прочие прикладные модели экономических процессов (модель спроса и предложения, модели управления запасами, модели теории массового обслуживания, модели теории игр). Рассмотрим подробнее некоторые из перечисленных моделей, наиболее часто использующиеся в практике управления Популярное:
|
Последнее изменение этой страницы: 2016-05-28; Просмотров: 1174; Нарушение авторского права страницы