Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Фон Неймановская архитектура вычислительных систем.



Фон Неймановская архитектура вычислительных систем.

Основные архитектурно-функциональные принципы построения ЦВМ были разработаны и опубликованы в 1946 г. венгерским математиком и физиком Джоном фон Нейманом и его коллегами Г.Голдстайном и А.Берксом в ставшем классическим отчете " Предварительное обсуждение логического конструирования электронного вычислительного устройства". Основополагающими принципами ЭВМ на основании этого отчета являются: 1) принцип программного управления выполнением программы, и 2) принцип хранимой в памяти программы. Они легли в основу понятия фон-Неймановской архитектуры, широко использующей счетчик команд.

 

Архитектурные принципы Фон Неймана.

· Программное управление. Выполнение вычислений, описанных программой, сводится к последовательному выполнению её команд.

· Программа – это определенная последовательность управляющих слов (команд), записанных в соответствие с алгоритмом. Команда определяет тип операции и слова, т.е. информации, обрабатываемой с ее помощью.

· Двоичное представление информации. Вся информация, необходимая для работы ЭВМ представляется в двоичном виде и разделяется на единицы, называемые словами.

· Разнотипные по смыслу слова (команда, данные) различаются лишь способом использования.

· Принцип однородности памяти. Слова размещаются в ячейках памяти и идентифицируются номерами ячеек, т.е. адресами. В одной памяти хранятся и команды и данные.

Гарвардская архитектура вычислительных систем.

Гарвардская архитектура — архитектура ЭВМ, отличительными признаками которой являются:
1. Хранилище инструкций и хранилище данных представляют собой разные физические устройства.
2. Канал инструкций и канал данных также физически разделены.

Архитектура была разработана Говардом Эйкеном в конце 1930-х годов в Гарвардском университете.

Отличия архитектуры современных процессоров от фон Неймановской.

Прерывание – первое отличие современных архитектур от машин фон-Неймана. Работа прерывания заключается в том, что при поступлении сигнала прерывания процессор обязан прекратить выполнение текущей программы и немедленно начать обработку процедуры прерывания. ПДП (Прямой Доступ к Памяти) – второе отличие современных архитектур от машин фон-Неймана. ПДП позволяет сократить расходы на пересылку единицы информации.

4. Поколения вычислительной техники (по технологии ключевых элементов, по памяти, относительно фон Неймана).

Первое поколение ЭВМ 1945-1960-е годы

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестоко ориентированы на конкретную модель машины и " умирали" вместе с этими моделями.

Второе поколение ЭВМ 1960-1970-е годы

Стали применяться внешние накопители на жестких магнитных дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

Третье поколение ЭВМ 1970-1980-е годы

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители. Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующую кэш-память.

Четвертое поколение 1980-1990-е годы

Оперативная память стала строиться не на ферритовых сердечниках, а также на интегральных CMOS-транзисторных схемах, причем непосредственно запоминающим элементом в них служила паразитная емкость между электродами (затвором и истоком) этих транзисторов.

Пятое поколение 1990-2010-е годы

Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

Шестое поколение

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем, распознающие сложные образы.

Процессор. Основные характеристики процессора.

Центральный процессор (ЦП; также центральное процессорное устройство — ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура.

1.Тактовая частота — тактом мы можем условно назвать одну операцию. Единица измерения МГц и ГГц (мегагерц и гигагерц). 1 МГц — значит, что процессор может выполнить 1 миллион операций в секунду. У нас на домашнем компьютере процессор 3, 16 ГГц — следовательно он может выполнить 3 Миллиарда 166 миллионов операций за 1 секунду.

2. Разрядность. Сейчас всё больше процессоров 64 разрядные. В общем виде — разрядность означает, сколько оперативной памяти вы можете максимум установить в свой компьютер. В принципе сейчас для домашнего компьютера вполне достаточно 4 гигабайт оперативной памяти и следовательно 32 разрядного процессора. Если у вас дома не будет сервер, то не гонитесь за большей разрядностью.

3. Кэш процессора — довольно важный параметр. Чем он больше, тем больше данных хранится в особой памяти, которая ускоряет работу процессора. В кэше процессора находятся данные, которые могут понадобится в работе в самое ближайшее время. Чтобы вы не путались в уровнях кэша — запомните одно свойство: кэш первого уровня самый быстрый, но самый маленький, второго — помедленней, но побольше и кэш третьего уровня самый медленный и самый большой(если он есть).

Процессор. Устройство, основные узлы. Командный цикл.

Командой называется элементарное действие, которое может выполнить процессор без дальнейшей детализации. Последовательность команд, выполнение которых приводит к достижению определенной цели, называется программой. Команды программы кодируются двоичными словами и размещаются в памяти ЭВМ. Вся работа ЭВМ состоит в последовательном выполнении команд программы. Действия по выбору из памяти и выполнению одной команды называются командным циклом.

В составе любого процессора имеется специальная ячейка, которая хранит адрес выполняемой команды — счетчик команд или программный счетчик. После выполнения очередной команды его значение увеличивается на единицу (если код одной команды занимает несколько ячеек памяти, то содержимое счетчика команд увеличивается на длину команды). Таким образом осуществляется выполнение последовательности команд. Существуют специальные команды (передачи управления), которые в процессе своего выполнения модифицируют содержимое программного счетчика, обеспечивая переходы по программе. Сама выполняемая команда помещается в регистр команд — специальную ячейку процессора.

Во время выполнения командного цикла процессор реализует следующую последовательность действий:

1. Извлечение из памяти содержимого ячейки, адрес которой хранится в программном счетчике, и размещение этого кода в регистре команд (чтение команды).

2. Увеличение содержимого программного счетчика на единицу.

3. Формирование адреса операндов.

4. Извлечение операндов из памяти.

5. Выполнение заданной в команде операции.

6. Размещение результата операции в памяти.

7. Переход к п. 1.

Чипсет. Назначение.

Чипсет — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате, выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других.

Назначение чипсета.

Чипсет на системной плате — основной исполнительный механизм от которого зависит, сможет ли процессор реализовать весь свой потенциал, сумеете ли вы использовать для работы порты и шины тех или иных устройств ввода-вывода.

Микросхемы чипсета запаяны на системную плату, поэтому не допускают модернизации с помощью их замены. Чипсеты разбиты на группы, главным образом, с учетом поколения и мощности компьютера.

Стандартные интерфейсы ПК.

Основным назначением интерфейса Centronics (аналог-ИРПР-М) является подключение к компьютеру принтеров различных типов.

Статистическое ОЗУ.

Основой ячейки памяти в ЗУ статического типа является триггер. В качестве базовых элементов для реализации триггера могут использоваться как биполярные транзисторы, так и полевые. Однако первые не нашли широкого применения в силу большой потребляемой мощности построенных на их основе микросхем памяти. Поэтому оптимальным является использование полевых транзисторов.

Динамическое ОЗУ.

Как уже отмечалось, информация в ячейке динамического ОЗУ представлена в виде наличия или отсутствия заряда на конденсаторе.

Перспективные типы ОЗУ.

Типы оперативной памяти

Различают следующие типы оперативной памяти:

● FPM DRAM;

● RAM EDO;

● BEDO DRAM;

● SDRAM;

● DDR SDRAM;

● DRDRAM и т.д.

FPM DRAM (Fast Page Mode DRAM) — динамическая память с быстрым страничным доступом, активно используется с микропроцессорами 80386 и 80486.

RAM EDO (EDO — Extended Data Out, расширенное время удержания (доступности) данных на выходе) фактически представляет собой обычные микросхемы FPM, к которым добавлен набор регистров-защелок, благодаря чему данные на выходе могут удерживаться в течение следующего запроса к микросхеме.

ВЕDО DRАМ (Burst Extended Data OutPut, EDO с блочным доступом). Современные процессоры благодаря внутреннему и внешнему кэшированию команд и данных обмениваются с основной памятью преимущественно блоками слов максимальной длины.

SDRAM (Synchronous DRAM — синхронная динамическая память), память с синхронным доступом, увеличивает производительность системы за счет синхронизации скорости работы ОЗУ со скоростью работы шины процессора.

DDR SDRAM (Double Data Rate SDRAM — SDRAM II). Вариант памяти SDRAM, осуществляющий передачу информации по обоим фронтам тактового сигнала.

DRDRAM (Direct Rambus DRAM — динамическая память с прямой шиной для RAM) — перспективный тип оперативной памяти, позволивший значительно увеличить производительность компьютеров.

Архитектура жесткого диска.

Существует три типа дисков: фиксированные, динамические и разностные. В следующих подразделах рассмотрим подробнее каждый из этих типов.
Фиксированные виртуальные жесткие диски.

Фиксированный виртуальный жесткий диск имеет размер, указанный вами при его создании, который в процессе работы не изменяется. Если вы создадите виртуальный жесткий диск, скажем, объемом в 20ГБ, то будет создан vhd-файл приблизительно на 24ГБ, несмотря на данные, содержащиеся в вашем диске. Часть дискового пространства будет сразу отведена под внутреннюю структуру футера жесткого диска. Итого, размер файла будет равняться указанному вами размеру жесткого диска, плюс размер футера.

Динамический виртуальный жесткий диск представляет собой файл, размер которого увеличивается по мере записи данных, плюс размер хедера и футера. Данные распределяются в блоки. Соответственно, чем больше вы записываете на этот жесткий диск данных, тем больше увеличивается размер жесткого диска, за счет большего количества выделяемых блоков. Например, изначально после создания динамического жесткого диска, его объем варьируется в пределах 80-85МБ в базовой файловой системе, но при записи данных, со временем, его объем будет все время увеличиваться, вплоть до своего лимита, то есть до фактического ограничения основного протокола аппаратного диска.

Разностный виртуальный жесткий диск (в некоторой документации обозначается как «дочерний» виртуальный жесткий диск) в какой-то степени по своей структуре может напомнить динамический диск, но он представляет текущее состояние виртуального жесткого диска в виде набора измененных блоков соответствующего родительского виртуального диска. Этот тип виртуальных жестких дисков не является независимым и в процессе своего функционирования полностью зависит от другого жесткого диска. Родительский жесткий диск может быть любым из упомянутых типов образов жестких дисков, в том числе и другим разностным жестким диском. В свою очередь, родительский жесткий диск доступен только для чтения, поэтому изменять данные вы сможете только на разностном жестком диске. Несколько разностных виртуальных жестких дисков образуют цепочку разностных дисков.

RAID - технология.

RAID — массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое.

Файловые системы FAT, NTFS.

FAT (англ. File Allocation Table — «таблица размещения файлов») — классическая архитектура файловой системы, которая из-за своей простоты всё ещё широко используется для флеш-накопителей. В недавнем прошлом использовалась в дискетах, на жёстких дисках и других носителях информации.

NTFS (от англ. New Technology File System — «файловая система новой технологии») — стандартная файловая система для семейства операционных систем Microsoft Windows NT.

Сравнение NTFS и FAT 32.

NTFS.

Достоинства:

1. Быстрая скорость доступа к файлам малого размера;

2. Размер дискового пространства на сегодняшний день практически не ограничен;

3. Фрагментация файлов не влияет на саму файловую систему;

4. Высокая надежность сохранения данных и собственно самой файловой структуры;

5. Высокая производительность при работе с файлами большого размера;

Недостатки:

1. Более высокие требования к объему оперативной памяти по сравнению с FAT 32;

2. Работа с каталогами средних размеров затруднена из-за их фрагментации;

3. Более низкая скорость работы по сравнению с FAT 32

FAT 32

Достоинства:

1. Высокая скорость работы;

2. Низкое требование к объему оперативной памяти;

3. Эффективная работа с файлами средних и малых размеров;

4. Более низкий износ дисков, вследствие меньшего количества передвижений головок чтения/записи.

Недостатки:

1. Низкая защита от сбоев системы;

2. Не эффективная работа с файлами больших размеров;

3. Ограничение по максимальному объему раздела и файла;

4. Снижение быстродействия при фрагментации;

5. Снижение быстродействия при работе с каталогами, содержащими большое количество файлов;

Flash - технология.

Технология Flash основана на использовании векторной графики в формате Shockwave Flash (SWF) разработанная компанией Macromedia.

Отношение сигнал/шум

Отношение сигнал/шум (S/N или SNR — Signal to Noise Ratio) показывает, во сколько раз громкость сигнала больше громкости шума, возникающего в звуковой плате по различным причинам, прежде всего в результате ошибки дискретизации.

Частота дискретизации

Частота дискретизации (оцифровки) сигнала должна быть как минимум в два раза больше максимальной частоты входного сигнала (так называемая теорема Котельникова-Найквиста).

Технология сети Ethernet.

Ethernet ([ˈ iː θ ə rˌ nɛ t] от англ. ether [ˈ iː θ ə r] «эфир») — пакетная технология передачи данных преимущественно локальных компьютерных сетей.

Ethernet - самая популярная технология построения локальных сетей. Основанная на стандарте IEEE 802.3, Ethernet передает данные со скоростью 10 Мбит/с. В сети Ethernet устройства проверяют наличие сигнала в сетевом канале (" прослушивают" его). Если канал не использует никакое другое устройство, то устройство Ethernet передает данные. Каждая рабочая станция в этом сегменте локальной сети анализирует данные и определяет, предназначены ли они ей. Такая схема наиболее действенна при небольшом числе пользователей или незначительном количестве передаваемых в сегменте сообщений. При увеличении числа пользователей сеть будет работать не столь эффективно. В этом случае оптимальное решение состоит в увеличении числа сегментов для обслуживания групп с меньшим числом пользователей. Между тем в последнее время наблюдается тенденция предоставлять каждой настольной системе выделенные линии 10 Мбит/с. Эта тенденция определяется доступностью недорогих коммутаторов Ethernet. Передаваемые в сети Ethernet пакеты могут иметь переменную длину.

Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Преимущества и недостатки

Достоинства:

  • Отсутствие возможности для столкновения передающейся информации.
  • Возможность одновременной передачи данных сразу несколькими компьютерами.
  • Возможность промежуточного сигнала.

Недостатки:

  • Высокая стоимость и сложность обслуживания.
  • В случае выхода из строя кабеля или компьютера сеть прекращает функционировать.
  • Кольцо в 2.5 раза медленнее шины.

Устройство монитора.

Монитор включает: экран (с электронно-лучевой трубкой); систему управления эл/трубкой; неотъемлемая его часть – видеопамять.

Адаптер размещается в системном блоке, на отдельной плате – видеоплате. Он во многом определяет возможности монитора. Основные блоки его – видеопамять и ПЗУ-генератор символов.

Разрешение — величина, определяющая количество точек (элементов растрового изображения) на единицу площади (или единицу длины).

Фон Неймановская архитектура вычислительных систем.

Основные архитектурно-функциональные принципы построения ЦВМ были разработаны и опубликованы в 1946 г. венгерским математиком и физиком Джоном фон Нейманом и его коллегами Г.Голдстайном и А.Берксом в ставшем классическим отчете " Предварительное обсуждение логического конструирования электронного вычислительного устройства". Основополагающими принципами ЭВМ на основании этого отчета являются: 1) принцип программного управления выполнением программы, и 2) принцип хранимой в памяти программы. Они легли в основу понятия фон-Неймановской архитектуры, широко использующей счетчик команд.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-28; Просмотров: 2281; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.052 с.)
Главная | Случайная страница | Обратная связь