Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные характеристики магнитных материалов.



 

Магнитные свойства материалов характеризуется петлей гистерезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.

1.1. Петля гистерезиса . При циклическом изменении напряженности постоянного магнитного поля от 0 до +Н, от +Н до –Н и снова от –Н до +Н кривая изменения индукции (кривая перемагничивания) имеет форму замкнутой кривой – петли гистерезиса. Для слабых полей петля имеет вид эллипса (рис 1.1). При увеличении значения напряженности магнитного поля Н получают серию заключенных одна в другую петель гистерезиса. Когда все векторы намагниченности доменов сориентируются вдоль направления поля, процесс намагничивания закончится состоянием технического насыщения намагниченности материала. Петлю гистерезиса, полученную при условии насыщения намагничивания, называют предельной петлей гистерезиса. Она характеризуется максимально достигнутым значением индукции Bs, называется индукцией насыщения. При уменьшении напряженности магнитного поля от +Н до 0 магнитная индукция сохраняет остаточную индукцию Вс. Чтобы получить остаточную магнитную индукцию, равную 0, необходимо приложить противоположно направленное размагничивающее поле определенной напряженности -Нс. Отрицательная напряженность магнитного поля -Нс называется коэрцитивной силойматериала. При достижении напряженности магнитного поля значения –Н, а затем 0 вновь возникает остаточная индукция –Вс. Если повысить напряженность магнитного поля до +Нс, то остаточная магнитная индукция Вс будет равна 0.

Площадь гистерезисных петель в промежуточных и предельном состояниях характеризует рассеивание электрической энергии в процессе перемагничивания материала, т.е. потери на гистерезис. Площадь гистерезисной петли зависит от свойств материала, его геометрических размеров и частоты перемагничивания.

По предельной петле гистерезиса определяют такие характеристики магнитных материалов, как индукцию
насыщения Bs, остаточную индукцию Вс, коэрцитивную силу Нс.

 

2. Кривая намагничивания . Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Biизмеряется в теслах (Тл) и связана с намагниченностью М формулой

, (1)

где - магнитная постоянная, равная 4p·10-7 Гн/м; М-намагниченность, А·м-1.

 


3.
О сновная (коммутационная) кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании (см. рис. 1.1) и отражает изменение магнитной индукции В в зависимости от напряженности магнитного поля Н, которое создается в материале при намагничивании. Напряженность магнитного поля в образце в виде тороида, когда магнитная цепь замкнута, равна напряженности внешнего поля Нв. В разомкнутой магнитной цепи на концах образца появляются магнитные полюса, создающие размагничивающее поле Нр. Разница между магнитными напряженностями внешнего и размагничивающего полей определяют внутреннюю магнитную напряженность Hi материала.

(2)

(3)

где mа – абсолютная магнитная проницаемость; m0- магнитная постоянная, равная 1, 257 мкГн/м.
сновная кривая намагничивания (рис 1.2) имеет ряд характерных участков, которые можно условно выделить при намагничивании монокристалла ферромагнетика. Первый участок кривой намагничивания соответствует процессу смещения границ менее благоприятно ориентированных доменов. На втором участке происходит поворот векторов намагниченности доменов в направлении внешнего магнитного поля. Третий участок соответствует парапроцессу, т.е. завершающему этапу процесса намагничивания, когда сильное магнитное поле поворачивает в направлении своего действия не сориентированные магнитные моменты доменов ферромагнетика.

Магнитная проницаемость.

Для характеристики поведения магнитных материалов в поле с напряженностью Н пользуются понятиямиабсолютной магнитной проницаемости mа и относительной магнитной проницаемости m0:

Подставляя эти значения в соотношения конкретные значения В и Н, получают различные виды магнитной проницаемости которые применяют в технике. Наиболее часто используют понятия нормальной m, начальной mн, максимальной mmax, дифференциальной mдиф и импульсной mи магнитной проницаемости.

Относительную магнитную проницаемость материала m получают по основной кривой намагничивания. Для простоты слово «относительная» не упоминается.

Магнитную проницаемость при Н=0 называют начальной магнитной проницаемостью mн. Ее значение определяется при очень слабых полях (примерно 0, 1 А/м).

Максимум на кривой проницаемости, соответствующий II участку кривой намагничивания (см. рис. 2), характеризуется значением максимальной магнитной проницаемости mmax. Начальная и максимальная магнитные проницаемости представляют собой частные случаи нормальной магнитной проницаемости. Их значения наряду с Bs, Вс и Нс являются важнейшими параметрами магнитного материала.

В сильных полях в области насыщения магнитная проницаемость стремится к единице.

Потери энергии при перемагничивании .

Это необратимые потери электрической энергии, которая выделяется в материале в виде тепла.

Потери на перемагничивание магнитного материала складываются из потерь на гистерезис и динамических потерь.

Потери на гистерезис создаются в процессе смещения стенок доменов на начальной стадии намагничивания. Вследствие неоднородности структуры магнитного материала на перемещение стенок доменов затрачивается магнитная энергия.

Динамические потери Рвт вызываются частично вихревыми токами, которые возникают при изменении направления и напряженности магнитного поля; они также рассеивают энергию:


(5)


Потери на вихревые токи из-за квадратичной зависимости от частоты поля превосходят потери на гистерезис на высоких частотах.

К динамическим потерям относятся также потери на последействие Рп, которые связаны с остаточным изменением магнитного состояния после изменения напряженности магнитного поля. Они зависят от состава и термической обработки материала и появляются на высоких частотах. Потери на последействие (магнитную вязкость) необходимо учитывать при использовании ферромагнетиков в импульсном режиме.


 

 

УРОК № 24


Поделиться:



Популярное:

  1. Delphi. Основные характеристики и терминология
  2. I. Основные профессиональные способности людей (Уровень 4)
  3. II. ОСНОВНЫЕ ЖАЛОБЫ БОЛЬНОГО
  4. II. Основные расчетные величины индивидуального пожарного риска
  5. VIII. Основные направления просветительской, популяризаторской и коммуникативной деятельности библиотек
  6. XVI. Основные правовые системы современности.
  7. А. Жизненный цикл продукта и его основные стадии. Оценка конкурентоспособности продукта
  8. Авторитарный режим: основные черты и виды
  9. АДАПТАЦИИ К ПАРАЗИТИЧЕСКОМУ ОБРАЗУ ЖИЗНИ. ОСНОВНЫЕ ТЕНДЕНЦИИ
  10. Акриловые материалы холодного отверждения. Классификация эластичных базисных материалов. Сравнительная оценка полимерных материалов для искусственных зубов с материалами другой химической природы.
  11. Анатомо-физиологические особенности кроветворения, классификация, основные синдромы.
  12. Анатомо-физиологические особенности, основные синдромы и классификация


Последнее изменение этой страницы: 2016-05-29; Просмотров: 871; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь