Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Измерение параметров конденсаторов.



Общие сведения

Основными параметрами, характеризующими конденсаторы, являются их электрическая ёмкость и угол потерь.

В электронных устройствах применяются конденсаторы многих типов и различных назначений. Возможные значения их ёмкостей лежат примерно в пределах от 1 пФ до 1000 мкФ. В области высоких и сверхвысоких частот объектами измерений могут также явиться весьма малые межэлектродные ёмкости электронных приборов и паразитные ёмкости между различными элементами схемы (ёмкости монтажа).

Допустимая погрешность измерения ёмкостей конденсаторов зависит от области применения последних. Ёмкость конденсаторов, входящих в состав колебательных систем, должна определяться особенно тщательно, с погрешностью, по крайней мере, 1%. При выборе конденсаторов блокировочных, разделительных, связи и т. п. обычно допускается значительный (до 20-50%) разброс ёмкостей и измерение их можно производить простейшими методами.

Рис. 1. Эквивалентные схемы (а, б) и векторная диаграмма (в) цепи с конденсатором

В каждом конденсаторе, включённом в электрическую цепь, имеют место потери энергии, возникающие главным образом в материале диэлектрика, а также вследствие несовершенства изоляции между выводами. С учётом потерь эквивалентную схему конденсатора можно представить в двух вариантах: либо в виде ёмкости С, включённой последовательно с сопротивлением потерь Rп (рис. 1, а), либо в виде той же ёмкости С, шунтированной сопротивлением утечки Rу (рис. 1, б). При переходе от одной эквивалентной схемы к другой для пересчёта значения активного сопротивления пользуются формулой

Rу = 1/((2*π *f*C)2 * Rп),

где f - частота тока в цепи конденсатора.

Из векторной диаграммы на рис. 1, в, справедливой для обоих вариантов эквивалентных схем, следует, что в цепи с конденсатором из-за наличия потерь фазовый сдвиг φ между током I и напряжением U всегда меньше 90°. Потери в конденсаторе обычно характеризуют углом потерь δ = 90° - & phi, определяемым в соответствии с обозначениями на рис. 1 из формулы

tg δ = Uп/Uс = Iу/Iс = 2*π *f*C*Rп = 1/(2*π *f*C*Rу).

Потери в конденсаторе иногда выражают коэффициентом мощности cos φ или током утечки Iу, определяемым при стандартных условиях. Для большинства конденсаторов потери очень малы (tg δ < 0, 001), поэтому можно считать

tg δ ≈ δ ≈ sin δ = sin (90° - φ ) = cos φ .

Наибольшие потери имеют место в электролитических и бумажных конденсаторах, применение которых в основном ограничивается областью низких частот.

При некоторых методах измерений потери в конденсаторе определяются одновременно с измерением его ёмкости. При этом следует иметь в виду, что с повышением частоты потери заметно возрастают (что соответствует увеличению значения Rп и уменьшению Rу), тогда как ёмкость С практически не зависит от частоты. На очень высоких частотах возможно заметное возрастание действующей (измеренной по приборам) ёмкости конденсаторов из-за влияния индуктивности обкладок и подводящих проводов.

Параметры конденсатора (С, Rn, Ry, δ ) зависят от внешних условий его работы - температуры, влажности, атмосферного давления, а также от приложенного к нему напряжения. Поэтому в ответственных случаях испытание конденсаторов осуществляется не только на их рабочих частотах, но и в условиях, близких к эксплуатационным.

Простейшие проверки конденсаторов можно производить и без специальных измерительных приборов. С помощью омметра или пробника легко обнаружить короткое замыкание или пробой между обкладками конденсатора (следует лишь учитывать, что пробой иногда проявляется только при значительном напряжении на конденсаторе, близком к его рабочему напряжению). Проверка на обрыв неэлектролитических конденсаторов ёмкостью от 0, 01 мкФ и выше проще всего производится включением конденсатора в цепь переменного тока, например осветительную или трансляционную, последовательно с какой-либо нагрузкой - лампой накаливания, громкоговорителем и т. п. Нормальное или несколько ослабленное свечение лампы или звучание радиопередачи будет свидетельствовать об отсутствии обрыва.

Конденсатор, сопротивление утечки которого велико, способен удерживать длительное время без заметного уменьшения полученный им заряд; это позволяет простыми средствами оценить качество конденсаторов ёмкостью более 0, 01 мкФ. При подключении к такому конденсатору омметра стрелка измерителя последнего за счёт тока заряда несколько отклонится, а затем (при большом сопротивлении утечки) возвратится в исходное или близкое к нему положение. Последующие кратковременные подключения к конденсатору омметра, повторяемые с интервалом в несколько секунд, не должны вызывать отклонения стрелки измерителя. При малом сопротивлении утечки заметное отклонение стрелки будет наблюдаться при каждом подключении омметра. Для проверки на утечку конденсаторов ёмкостью более 100 пФ можно применить головные телефоны, соединённые последовательно с низковольтной батареей. При малом сопротивлении утечки каждое подключение индикатора к конденсатору вызывает щелчок в телефонах, тогда как при хорошем конденсаторе щелчок прослушивается лишь при первом подключении. Измерение значения сопротивления утечки (на постоянном токе) может производиться индукторными или электронными мегомметрами.

Электролитические конденсаторы следует подсоединять к испытательному прибору с учётом полярности включения источника питания. При измерении сопротивления утечки таких конденсаторов рекомендуется отсчёт производить через 10 мин после их включения под напряжение, когда процесс заряда можно считать завершившимся.

Для измерения параметров конденсаторов применяются методы вольтметра - амперметра, непосредственного измерения при помощи микрофарадметров, сравнения (замещения), мостовой и резонансный.

Напряжение, приложенное к конденсатору при любом его испытании, не должно превосходить допустимого рабочего напряжения. Если в процессе испытания конденсатор заряжается до значительного напряжения, необходимо производить его разряд по окончании испытания (например, с помощью кнопки, включённой параллельно конденсатору).


Поделиться:



Популярное:

  1. Аксиологическое измерение науки
  2. Б1.В.ДВ.17 «Культурное измерение Севера и Арктики»
  3. Вклад А. Бине в измерение интеллекта
  4. Влияние параметров вентилятора и вентиляционной сети на его производительность
  5. Влияние параметров микроклимата на здоровье и
  6. Вопрос 7. О перечне параметров телефонного звонка и условиях работы на ТД
  7. Выбор метода организации работ и расчёт его основных параметров.
  8. Выявление условий возникновения и исследование резонанса напряжений в цепи синусоидального тока при последовательном соединении катушки индуктивности и батареи конденсаторов.
  9. Выявление условий возникновения и исследование резонанса токов в цепи синусоидального тока при параллельном соединении катушки индуктивности и батареи конденсаторов.
  10. Гигиеническое нормирование параметров ЭМП для населения
  11. Е) Расчет параметров конвейера
  12. Значения параметров по умолчанию


Последнее изменение этой страницы: 2016-05-29; Просмотров: 1605; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь