Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Порядок расчета выпрямителя напряжения
Точный аналитический расчет выпрямителей представляет определенные трудности, в связи с тем, что полупроводниковые приборы, применяемые в качестве преобразователей переменного напряжения в постоянное напряжение, являются нелинейными элементами. Расчет таких электрических цепей проводится по приближенным формулам с использованием графических зависимостей. В табл. 6.3. приведены формулы для расчета схем выпрямителей, приведенных на рис. 6.5 – 6.10. Для определения параметров элементов выпрямителя необходимо нахождение коэффициентов B, D, F и H. Чтобы приступить к нахождению данных коэффициентов, необходимо рассчитать следующие базовые величины: 1. Внутреннее сопротивление вентиля , где U пр – прямое падение напряжения на вентиле (0, 4 – 0, 5 В для германиевых диодов и 1, 0 – 1, 1 В для кремниевых диодов), k В – коэффициент, учитывающий динамические свойства характеристики диода (2, 0 – 2, 2 для германиевых диодов и 2, 2 – 2, 4 для кремниевых диодов), I ОВ – среднее значение тока вентиля выбирается по таблице 6 для соответствующей схемы выпрямления. Таблица6.3. .2. Активное сопротивление обмоток трансформатора где k r – коэффициент, зависящий от схемы выпрямления, определяется по таблице 7; B – магнитная индукция в сердечнике, Т. Величину магнитной индукции В для трансформаторов мощностью до 1000 Вт можно предварительно принимать равной 1, 2 – 1, 6 Т для сети с частотой тока 50 Гц и 1, 0 – 1, 3 Т для сети с частотой тока 400 Гц; f – частота переменного тока питающей сети; s – число стержней сердечника трансформатора ( s = 1 для броневой, s = 2 для стержневой и s = 3 для трехфазной конфигурации магнитопровода). Таблица 6.4.
3. Активное сопротивление фазы выпрямителя . 4. Основной расчетный коэффициент А где p – число импульсов пульсаций в цепи выпрямленного тока за период переменного напряжения. Для схемы на рис.6.5 p = 1; на рис. 6.6, 6.7, 6.8 p = 2; на рис. 6.9 p = 3; на рис.6.10 p = 6. 5. Проводят определения вспомогательных коэффициентов B, D, F и H по графикам, приведенным на рис. 6.11, 6.12, 6.13. 6. С помощью коэффициентов B, D, F и H по формулам таблицы 6 проводят расчет параметров выпрямителя. 7. По значениям U ОБР и I В с помощью справочных данных для диодов, приведенных в табл. 6.5, выбираем тип выпрямительных диодов. Выбранные из справочной таблицы данные диодов должны несколько превосходить расчетные значения, создавая, тем самым, запасной ресурс мощности выпрямителя. Таблица 6.5.
8. Определив по графику на рис. 6.13 значение коэффициента H и задаваясь коэффициентом пульсаций Kп% на выходе выпрямителя по таблице 5, определяют емкость конденсатора, необходимую для получения заданного коэффициента пульсаций по формуле из таблицы 6 откуда имеем 9. По справочнику необходимо выбрать тип конденсатора, его номинальную емкость и номинальное напряжение. Номинальное напряжение конденсатора должно не менее чем на 20% превосходить значение напряжения на нагрузке. Пример расчета выпрямителя напряжения. Требуется рассчитать выпрямитель для зарядного устройства по следующим данным: номинальное выпрямленное напряжение U 0 = 15 В; номинальный выпрямленный ток I 0 = 7 А; допустимый коэффициент пульсаций K П% = 1, 5; напряжение питающей сети U С = 220 В; частота сети f = 50 Гц. В качестве исходной схемы возьмем мостовую схему, рис. 6.7, выполненную с использованием германиевых диодов.. 1. Структурная схема вторичного источника питания приведена на рис. Рядом с ней приведено название и назначение всех составных частей схемы. 2. Выбираем схему выпрямителя согласно номера варианта, приводим ее в отчет и поясняем назначение всех элементов схемы. Схема выпрямителя напряжения приведена на рис.6.7. В ней Тр - трансформатор напряжения, служит для преобразования амплитуды переменного напряжения до необходимой величины;; диоды VD1-VD4 образуют схему мостового выпрямителя; конденсатор С0 служит сглаживающим фильтром, уменьшая пульсации напряжения на нагрузке; резистор Rн я является нагрузкой выпрямителя. 3. Выполнить расчет трансформатора (т.е. определить его мощность по вторичной обмотке, коэффициент трансформации, определить его типовую мощность). 3.1. Рассчитаем внутреннее сопротивление диода где U пр – прямое падение напряжения на вентиле (0, 4 – 0, 5 В для германиевых диодов и 1, 0 – 1, 1 В для кремниевых диодов), k В – коэффициент, учитывающий динамические свойства характеристики диода (2, 0 – 2, 2 для германиевых диодов и 2, 2 – 2, 4 для кремниевых диодов), I ОВ – среднее значение тока вентиля выбирается по табл. 6.3 для соответствующей схемы выпрямления. 3.2. Рассчитаем активное сопротивление обмоток трансформатора. где k r – коэффициент, зависящий от схемы выпрямления, определяется по таблице 7; B – магнитная индукция в сердечнике, Т. Величину магнитной индукции В для трансформаторов мощностью до 1000 Вт можно предварительно принимать равной 1, 2 – 1, 6 Т для сети с частотой тока 50 Гц и 1, 0 – 1, 3 Т для сети с частотой тока 400 Гц; f – частота переменного тока питающей сети; s – число стержней сердечника трансформатора ( s = 1 для броневой, s = 2 для стержневой и s = 3 для трехфазной конфигурации магнитопровода). 3.3.Активное сопротивление фазы выпрямителя R = RB + RТР = 0, 31 + 0, 104 = 0, 414 Ом. Определим основной расчетный коэффициент выпрямителя А: Определим вспомогательные коэффициенты В и D по графикам на рис. 6.11. Получаем: В = 1, 1; D = 2, 1. Определим параметры трансформатора (таблица 6.3) Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 1606; Нарушение авторского права страницы