Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет цепей методом комплексных амплитуд



Метод комплексных амплитуд состоит в следующем:

1) исходная схема электрической цепи заменяется комплексной схемой замещения, в которой:

а) все пассивные элементы заменяются их комплексными сопротивлениями, как показано на рис. 4.27.

б) все токи и напряжения в схеме заменяются их комплексными амплитудами, т.е. х(t) = Xm cos(w0t – jx) ® Xm = Xm ejjx.

ZL=jwL
L
ZC=1/(jwC)
C
ZR=R
R

Рис. 4.27

2) Расчет электрической цепи сводится к составлению уравнений состояния цепи на основе законов Ома и Кирхгофа в комплексной форме и нахождению комплексных амплитуд токов или напряжений на интересующих нас участках цепи, т.е. Ym = Ym ejjy.

3) Запись окончательного решения состоит в замене рассчитанных комплексных амплитуд на гармонические функции времени, т.е.

Ym =Ym e jjy ® y(t) = Ym cos(w0t – jy).

 

Пример 1. Алгоритм метода рассмотрим на примере анализа цепи, схема которой приведена на рис. 4.29.

Рис. 4.29. RLC-цепь второго порядка

На вход цепи подается синусоидальное воздействие . Параметры воздействия и элементов цепи известны: Um=1 В, ω =1 с-1, φ u=900, R=1 Ом, L=1 Гн, C=1 Ф. Требуется определить токи и напряжения ветвей, построить векторную диаграмму.

Решение.

1. Представим воздействие в комплексной форме:

.

2. Построим схему замещения цепи в частотной области, заменив элементы цепи комплексными двухполюсниками, как это показано на рис. 4.30.

Рис. 4.30. Схема замещения цепи в частотной области

3. Произведем расчет реакций (токов и напряжений) в комплексной области. При этом можно воспользоваться законами Кирхгофа и Ома в комплексной форме, а также известными методами расчета резистивных цепей:

, , ,

,

, ,

,

, .

3. Построим векторную диаграмму для токов и напряжений в цепи. Для этого на комплексной плоскости откладываются в соответствующем масштабе найденные токи и напряжения, как показано на рис. 4.31.

Рис. 4.31. Векторная диаграмма

Построение векторной диаграммы, как правило, является конечным результатом решения подобных задач. Векторная диаграмма показывает амплитуду и начальную фазу любого тока или напряжения. При необходимости записать временную функцию тока или напряжения, это всегда можно сделать, имея векторную диаграмму. Например, напряжение на L-элементе имеет амплитуду , а начальную фазу 1350, значит, во временной области это напряжение можно записать так:

.

Пример 2. Задана эквивалентная схема цепи синусоидального тока (рис. 10) и ее параметры.

Рис. 10.

Выполнить следующие действия:

1. Рассчитать токи в ветвях и напряжения на элементах схемы;

2. Составить и проверить баланс полных, активных и реактивных мощностей;

3. Построить векторную диаграмму токов для узла а.

Расчет проводим символическим методом в следующем порядке:

1. Рассчитываем сопротивление всех элементов схемы (учитываем, что )

2. Представляем ЭДС источника в виде комплекса действующего значения. Определяем комплексные сопротивления и проводимости ветвей

.

3. Рассчитываем токи в ветвях методом двух узлов. Задаем произвольно положительное направление токов в ветвях и положительное направление узлового напряжения. Используя основную формулу метода, рассчитываем узловое напряжение

.

Определяем токи в ветвях, используя обобщенный закон Ома

Проверяем корректность промежуточных расчетов, составив уравнение по первому закону Кирхгофа для узла а

.

Комплексная абсолютная погрешность расчета составляет

.

Определяем ее модуль

.

Рассчитываем относительную погрешность определения токов

.

Поскольку , расчет токов корректен. Первый пункт задания выполнен.

4. Составляем и проверяем баланс мощностей

Рассчитываем полную комплексную мощность, развиваемую источником, а также его активную и реактивную мощность. При этом используем закон Джоуля – Ленца в комплексной форме записи

,

.

Определяем суммарную активную и реактивную мощность на приемниках. При этом также используем закон Джоуля – Ленца

;

.

Рассчитываем суммарную полную комплексную мощность на приемниках

Проверяем корректность расчета, рассчитав модуль относительной погрешности определения полных мощностей

.

Расчет проведен корректно. Второй пункт задания выполнен.

5. Строим векторную диаграмму токов на комплексной плоскости, используя их действительные ( ) и мнимые ( ) составляющие. Задаемся масштабом по току , делим указанные составляющие токов на масштаб и откладываем получающиеся отрезки в сантиметрах вдоль осей комплексной плоскости (с учетом знаков составляющих).

Рис. 11.

Результаты построения (рис. 11) наглядно иллюстрируют корректность проведенных расчетов. Итак, третий пункт и все задание выполнены.

При выполнении задания №2 можно также воспользоваться рекомендуемой литературой [2, 3, 4].

Пример 6. Для цепи, изображенной на рис. 1 требуется:

1. Определить комплексным методом действующие значения напряжений и токов на всех участках цепи.

2. Определить активные, реактивные и полные мощности каждого участка цепи и всей цепи.

3. Составить баланс активных и реактивных мощностей и оценить погрешность расчета.

4. Построить векторную диаграмму токов и напряжений.

Рис. 1

Исходные данные:
U = 127 В, r1 = 15 Ом, C1 = 60 мкФ, r2 = 10 Ом, L2 = 80 мГн, r3 = 15 Ом, C3 = 90 мкФ. Частота питающего напряжения 50 Гц.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 6674; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь