Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Закон Ома для неоднородного участка цепи. Умножим скалярно обе части на вектор , численно равный элементу длины проводника и



Для любой точки внутри проводника напряженность результирующего поля равна сумме напряженности поля кулоновских сил и поля сторонних сил . Подставляя в (17.6), получим

 

Умножим скалярно обе части на вектор , численно равный элементу длины проводника и направленный по касательной к проводнику в ту же сторону, что и вектор плотности тока

 

Так как скалярное произведение совпадающих по направлению векторов и , равно произведению их модулей, то это равенство можно переписать в виде

 

С учетом

Интегрируя по длине проводника от сечения 1 до некоторого сечения 2 и учитывая, что сила тока во всех сечениях проводника одинакова, получаем

(

 

 

17.7)

Подставляя (17.10), (17.9) и (17.8) в (17.7),

окончательно получим

Последнее уравнение выражает собой закон Ома в интегральной форме для участка цепи, содержащего эдс и формулируется следующим образом: падение напряжения на участке цепи равно сумме падений электрического потенциала на этом участке и эдс всех источников электрической21 энергии, включённых на участке.

 

При замкнутой внешней цепи сумма падений электрических потенциалов и эдс источника равна сумме падений напряжения на внутреннем сопротивлении источника и во всей внешней цепи где или

Отсюда

 

 

На практике электрические цепи являются совокупностью различных проводников, определенным образом соединенных между собой. При последовательном соединении напряжение на каждом из проводников пропорционально его сопротивлению. Полное напряжение между началом первого и концом последнего сопротивления равно сумме напряжений на каждом сопротивлении . Так как

, то .

 

При параллельном соединении силы токов в отдельных проводниках обратно пропорциаональны их сопротивлениям.

, учитывая закон Ома для участка цепи, получим для параллельного соединения проводников следующую формулу

.

 

12. Закон Ома в дифференциальной форме. Удельное сопротивление проводников, его зависимость от температуры. Явление сверхпроводимости.

Ом экспериментально установил закон, согласно которому сила тока, текущего по однородному металлическому проводнику, пропорциональна падению напряжения U на проводнике:

(17.5)

Величина R называется электрическим сопротивлением проводника. Единицей сопротивления служит Ом, равный сопротивлению такого проводника, в котором при напряжении 1В течет ток в 1 А.

Величина сопротивления зависит от формы и размеров проводника, а также от свойств материала, из которого он сделан

. Для однородного цилиндрического проводника.


где - длина проводника, S - площадь поперечного сечения, - зависящий от свойств материала коэффициент, называемый удельным электрическим сопротивлением вещества.

Величина обратная сопротивлению называется проводимостью


Для большинства металлов удельное сопротивление растет с температурой приблизительно по линейному закону.

где - удельное сопротивление при 0°С, t - температура в градусах Цельсия, - постоянный коэффициент, численно равный примерно 1/273.

Закон Ома можно записать в дифференциальной форме. Выделим в проводнике элементарный цилиндрический объем dV с образующими, dl параллельными вектору плотности тока в данной точке (рис. 17.2). Через поперечное сечение dS цилиндра течет ток силой . Напряжение, приложенное к цилиндру, равно , где Е - напряженность поля в данном месте. Сопротивление цилиндра . Подставив эти значения в уравнение (17.5), получим

 

Носители заряда в каждой точке движутся в направлении вектора . Поэтому направления векторов и совпадают. Таким образом, можно написать

Эта формула выражает закон Ома в дифференциальной форме.

Явление сверхпроводимости.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах

 

 

При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4, 1 К, у аллюминия 1, 2 К, у олова 3, 7 К.

Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов.

Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

 

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами.

 

 

Значительный шаг в этом направлении произошел в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К).Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

 

 

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 800; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь