Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теория вероятностей и математическая статистика ⇐ ПредыдущаяСтр 4 из 4
1. Понятие события. Пространство элементарных событий. Виды событий. Действия над событиями: сложение, умножение. 2. Относительная частота события, её свойства. Классическое и статистическое определение вероятности. 3. Определение условной вероятности. Понятие независимых событий. Теорема умножения вероятностей для зависимых и независимых событий. Теорема сложения вероятностей для совместных и несовместных событий. 4. Повторные испытания. Формула Бернулли. Локальная и интегральная теоремы Лапласа. Формула Пуассона. 5. Дискретная случайная величина: ряд распределения, функция распределения. Законы распределения дискретной случайной величины: биномиальный и Пуассона. Числовые характеристики случайной величины: математическое ожидание, дисперсия и их свойства; среднее квадратическое отклонение. 6. Непрерывная случайная величина: функция распределения, плотность распределения, числовые характеристики, законы распределения (равномерный, показательный, нормальный) и их числовые характеристики. 7. Генеральная и выборочная совокупности. Распределение выборки: дискретные и интервальные статистические ряды. Полигон и гистограмма. Эмпирическая функция распределения и её свойства. Среднее арифметическое, выборочная дисперсия, их свойства. 8. Оценка параметров генерального распределения по выборке. Точечные оценки, их несмещённость, состоятельность. Интервальные оценки, доверительный интервал, построение доверительного интервала для оценки математического ожидания при известном среднем квадратическом отклонении (выборки большого объема). Номера контрольных работ, которые необходимо выполнить студентам специальностей экономических, гуманитарных и физической культуры, в третьем семестре, и номера задач соответствующих вариантов представлены в табл. 4. Таблица 4
IV семестр Для студентов всех специальностей, кроме экономических, гуманитарных и физической культуры
Программа Элементы линейной алгебры
1. Понятие матрицы. Частные виды матрицы. Понятие определителя квадратной матрицы. Свойства определителей. 2. Линейные операции над матрицами: сложение матриц, умножение матрицы на число. Умножение матриц. Понятие обратной матрицы, условие её существования. Решение матричных уравнений с квадратной невырожденной матрицей. 3. Система линейных уравнений: понятие её решения, матричная форма записи. Решение линейной системы с квадратной невырожденной матрицей по формулам Крамера. Решение линейной системы методом Гаусса. Однородная система линейных уравнений и ее решение. Применение метода Гаусса для отыскания обратной матрицы. 4. Понятие линейного пространства. Линейно зависимые и линейно независимые системы элементов (векторов). Понятие базиса и размерности линейного пространства. Координаты элемента (вектора) в данном базисе. Матрица перехода от одного базиса к другому; связь координат вектора в различных базисах. 5. Понятие линейного оператора (отображения). Матрица линейного оператора в фиксированном базисе. Изменение матрицы оператора при замене базиса. 6. Собственные векторы и собственные значения линейного оператора, их свойства и способ отыскания. 7. Понятие квадратичной формы. Приведение её к каноническому виду. 8. Системы дифференциальных уравнений, их решение методом исключения и методом собственных векторов. Понятие устойчивости решения системы. Исследование устойчивости с помощью собственных значений.
Теория вероятностей и математическая статистика 1. Понятие события. Пространство элементарных событий. Виды событий. Действия над событиями: сложение, умножение. 2. Относительная частота события, её свойства. Классическое и статистическое определение вероятности. 3. Определение условной вероятности. Понятие независимых событий. Теорема умножения вероятностей для зависимых и независимых событий. Теорема сложения вероятностей для совместных и несовместных событий. 4. Повторные испытания. Формула Бернулли. Локальная и интегральная теоремы Муавра-Лапласа. Формула Пуассона. 5. Дискретная случайная величина: ряд распределения, функция распределения. Законы распределения дискретной случайной величины: биномиальный и Пуассона. Числовые характеристики случайной величины: математическое ожидание, дисперсия и их свойства; среднее квадратическое отклонение. 6. Непрерывная случайная величина: функция распределения, плотность распределения, числовые характеристики, законы распределения (равномерный, показательный, нормальный) и их числовые характеристики. 7. Генеральная и выборочная совокупности. Распределение выборки: дискретные и интервальные статистические ряды. Полигон и гистограмма. Эмпирическая функция распределения и её свойства. Среднее арифметическое, выборочная дисперсия, их свойства. 8. Оценка параметров генерального распределения по выборке. Точечные оценки, их несмещенность, состоятельность. Интервальные оценки, доверительный интервал, построение доверительного интервала для оценки математического ожидания при известном среднем квадратическом отклонении (выборки большого объема).
Функции комплексной переменной И операционное исчисление Для студентов радиотехнических и электротехнических специальностей 1. Понятие функции комплексной переменной. Определение функций , , ; связь между этими функциями. Свойства функций , , . Гиперболические функции и их свойства. Логарифмическая функция и её свойства. 2. Предел, непрерывность, дифференцируемость функции комплексной переменной. Необходимые и достаточные условия дифференцируемости (условия Коши-Римана). Производные основных элементарных функций. Аналитические функции и их свойства. 3. Интеграл от функции комплексной переменной, его свойства. Интегральная теорема Коши для односвязной и многосвязной областей. 4.Ряды Тейлора и Лорана. Изолированные особые точки функции и их классификация. Ряд Лорана в окрестности изолированной особой точки. Понятие вычета функции в особой точке и его вычисление. Применение вычетов к вычислению интеграла по замкнутому контуру. 5. Преобразование Лапласа. Основные свойства оригиналов и изображений. Изображение основных элементарных функций. Восстановление оригинала по его изображению. Применение преобразования Лапласа к решению дифференциальных уравнений. Номера контрольных работ, которые необходимо выполнить студентам всех специальностей, кроме экономических, гуманитарных и физической культуры, в четвёртом семестре, и номера задач соответствующих вариантов представлены в табл. 5. Таблица 5
*Номера задач в контрольной № 7 только для студентов радиотехнических и электротехнических специальностей. IV семестр Для студентов специальностей экономических, гуманитарных и физической культуры Элементы линейной алгебры
1. Понятие матрицы. Частные виды матрицы. Понятие определителя квадратной матрицы. Свойства определителей. 2. Линейные операции над матрицами: сложение матриц, умножение матрицы на число. Умножение матриц. Понятие обратной матрицы, условие её существования. Решение матричных уравнений с квадратной невырожденной матрицей. 3. Система линейных уравнений: понятие её решения, матричная форма записи. Решение линейной системы с квадратной невырожденной матрицей по формулам Крамера. Решение линейной системы методом Гаусса. Однородная система линейных уравнений и ее решение. Применение метода Гаусса для отыскания обратной матрицы. 4. Понятие линейного пространства. Линейно зависимые и линейно независимые системы элементов (векторов). Понятие базиса и размерности линейного пространства. Координаты элемента (вектора) в данном базисе. Матрица перехода от одного базиса к другому; связь координат вектора в различных базисах. 5. Понятие линейного оператора (отображения). Матрица линейного оператора в фиксированном базисе. Изменение матрицы оператора при замене базиса. 6. Собственные векторы и собственные значения линейного оператора, их свойства и способ отыскания. 7. Понятие квадратичной формы. Приведение её к каноническому виду.
Линейное программирование 1. Экономико-математические модели. Задачи о рентабельности производства, о смесях, о раскрое материалов, о размещении заказа, об использовании мощностей. Транспортная задача. 2. Общая задача линейного программирования (ЗЛП): основные понятия. Различные формы записи ЗЛП. Приведение ЗЛП к каноническому виду. 3. Выпуклые множества точек: основные понятия. Выпуклые множества в мерном пространстве. Геометрическая интерпретация ЗЛП. Свойства решений ЗЛП. 4. Графическое решение ЗЛП: постановка и алгоритм графического метода решения ЗЛП. 5. Системы линейных уравнений: элементарные преобразования системы, метод Жордана-Гаусса и его алгоритм. Неотрицательное базисное решение. Операция однократного замещения. 6. Симплексный метод решения ЗЛП: геометрическая интерпретация, симплексные таблицы и их заполнение. Теоретическое обоснование симплексного метода: теоремы, лежащие в основе этого метода. Алгоритм симплексного метода. Метод искусственного базиса и особенности его алгоритма. 7. Теория двойственности. Задача использования сырья. Виды двойственных задач. Правила составления двойственных задач. Теоремы двойственности. Связь между решениями взаимно-двойственных задач. 8. Транспортная задача. Общая постановка задачи. Закрытая и открытая задачи. Обоснование решения транспортной задачи. Нахождения первоначального опорного плана: метод северо-западного угла, метод минимальной стоимости. Метод потенциалов. Критерий оптимальности решения транспортной задачи. Алгоритм метода потенциалов. Номера контрольных работ, которые необходимо выполнить студентам специальностей экономических, гуманитарных и физической культуры, в четвёртом семестре, и номера задач соответствующих вариантов представлены в табл. 6.
Таблица 6
Контрольные задания
1–10. Даны координаты вершин пирамиды А1А2А3А4. Найти: 1) уравнение прямой, на которой лежит ребро А1А2; 2) уравнение плоскости, на которой лежит грань А1А2А3; 3) угол между ребром А1А4 и гранью А1А2А3; 4) площадь грани А1А2А3; 5) объём пирамиды. 1. А1(7, 7, 6), А2(5, 10, 6), А3(5, 7, 12), А4(7, 10, 4). 2. А1(6, 1, 1), А2(4, 6, 6), А3(4, 2, 0), А4(1, 2, 6). 3. А1(8, 7, 5), А2(10, 6, 6), А3(5, 7, 9), А4(8, 11, 8). 4. А1(7, 7, 3), А2(6, 5, 8), А3(3, 5, 8), А4(8, 4, 1). 5. А1(4, 2, 5), А2(0, 7, 2), А3(0, 2, 7), А4(1, 5, 0). 6. А1(4, 4, 10), А2(4, 10, 2), А3(2, 8, 4), А4(9, 8, 9). 7. А1(4, 6, 5), А2(6, 9, 4), А3(2, 10, 10), А4(7, 5, 9). 8. А1(3, 5, 4), А2(8, 7, 4), А3(5, 10, 4), А4(4, 7, 8). 9. А1(10, 6, 6), А2(-2, 8, 2), А3(6, 8, 9), А4(7, 10, 3). 10. А1(2, 9, 3), А2(6, 3, 7), А3(6, 8, 5), А4(5, 11, 10). 11–20. Установить, какие линии определяются данными уравнениями. Изобразить линии на чертеже. 11. а) , б) . 12. а) , б) . 13. а) , б) . 14. а) , б) . 15. а) , б) . 16. а) , б) . 17. а) , б) . 18. а) , б) . 19. а) , б) . 20. а) , б) . 21–30. 1) Записать число в алгебраической форме; 2) изобразить его на координатной плоскости; 3) записать число в тригонометрической и показательной формах; 4) вычислить ; 5) найти все корни уравнения . 21. . 22. . 23. . 24. . 25. . 26. . 27. . 28. . 29. . 30. . 31–40. Найти пределы, используя замечательные пределы и эквивалентные бесконечно малые функции. 31. а) , б) . 32. а) , б) . 33. а) , б) . 34. а) , б) . 35. а) , б) . 36.а) , б) . 37. а) , б) . 38. а) , б) . 39. а) , б) . 40. а) , б) . 41–50. Дано уравнение кривой, точка и уравнение прямой . Требуется: 1) составить уравнения касательной и нормали к данной кривой в точке с абсциссой ; 2) найти точку на кривой , в которой касательная параллельна прямой . 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51–60. Найти производные данных функций. 51. а) , б) 52. а) , б) . 53. а) , б) . 54. а) , б) . 55. а) , б) . 56. а) , б) . 57. а) , б) . 58. а) , б) . 59. а) , б) . 60. а) , б) . 61–70. Вычислить пределы, используя правило Лопиталя. 61. а) б) 62. а) б) 63. а) б) 64. а) б) 65. а) б) 66. а) б) 67. а) б) 68. а) б) 69. а) б) 70. а) б) 71–80. Исследовать функции с помощью производных первого и второго порядков. Найти асимптоты. Построить графики функций. 71. а) , б) . 72. а) , б) . 73. а) , б) . 74. а) , б) . 75. а) , б) . 76. а) , б) . 77. а) , б) . 78. а) , б) . 79. а) , б) . 80. а) , б) . 81–90. Найти неопределённые интегралы. 81. а) , б) , в) , г) . 82. а) , б) , в) , г) . 83. а) , б) , в) , г) . 84. а) , б) , в) , г) . 85. а) , б) , в) , г) . 86. а) , б) , в) , г) . 87. а) , б) , в) , г) . 88. а) , б) , в) , г) . 89. а) , б) , в) , г) . 90. а) , б) , в) , г) . 91–100. Вычислить несобственный интеграл или установить его расходимость. 91. . 92. . 93. . 94. . 95. . 96. . 97. . 98. . 99. . 100. . 101–110. Найти общие решения дифференциальных уравнений. 101. а) , б) . 102. а) , б) . 103. а) , б) . 104. а) , б) . 105. а) , б) . 106. а) , б) . 107. а) , б) . 108. а) , б) . 109. а) , б) . 110. а) , б) . 111–120. Найти общее решение неоднородного линейного дифференциального уравнения. 111. . 112. . 113. . 114. . 115. . 116. . 117. . 118. . 119. . 120. . 121–130. Исследовать сходимость числового ряда. 121. . 122. . 123. . 124. . 125. . 126. . 127. . 128. . 129. . 130. . 131–140. Найти область сходимости степенного ряда. 131. . 132. . 133. . 134. . 135. . 136. . 137. . 138. . 139. . 140. 141–150. Вычислить определённый интеграл с точностью до 0, 001, используя разложение подынтегральной функции в ряд Маклорена. 141. . 142. . 143. . 144. . 145. . 146. . 147. . 148. . 149. . 150. . 151–160. Найти точки экстремума функции . 151. . 152. . 153. . 154. . 155. . 156. . 157. . 158. . 159. . 160. . 161–170. Найти наименьшее m и наибольшее M значения функции в замкнутой области D, заданной системой неравенств. Сделать чертёж области D. 161. , . 162. , . 163. , . 164. , . 165. , . 166. , . 167. , . 168. , . 169. , . 170. , . 171–180. Даны функция , точка и вектор . Найти: 1) наибольшую скорость возрастания функции в точке А; 2) скорость изменения функции в точке А по направлению вектора . 171. , А(1, 1), . 172. , А(1, 1), . 173. , А(2, 1), . 174. , А(1, 1), . 175. , А(-1, 2), . 176. , А(1, 3), . 177. , А(1, 2), . 178. , А(2, 3), . 179. , А(1, 1), . 180. , А(2, 1), . 181–190. Задана пластина неравенствами в декартовой системе координат и – плотностью материала, из которого изготовлена пластина. Найти массу пластины. 181. , ; . 182. , ; . 183. ; . 184. , ; . 185. ; . 186. , ; . 187. , ; . 188. ; . 189. ; . 190. ; . 191–200. Вычислить с помощью тройного интеграла объём тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на координатную плоскость ХОУ. 191. . 192. 193. . 194. . 195. Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 434; Нарушение авторского права страницы