Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лекция 2. Равновесие системы сил. Пара сил.



Лекция 2. Равновесие системы сил. Пара сил.

В данной лекции рассматриваются следующие вопросы

1. Проекция силы на ось и на плоскость.

2. Геометрический способ сложения сил.

3. Равновесие системы сходящихся сил.

4. Момент силы относительно центра или точки.

5. Теорема Вариньона о моменте равнодействующей.

6. Пара сил.

7. Момент пары.

8. Свойства пар.

9. Сложение пар.

10. Теорема о параллельном переносе силы.

11. Приведение плоской системы сил к данному центру.

12. Условия равновесия произвольной плоской системы сил.

13. Случай параллельных сил.

14. Равновесие плоской системы параллельных сил.

15. Сложение параллельных сил. Центр параллельных сил.

16. Понятие о распределенной нагрузке.

17. Расчет составных систем. Статически определимые и статически неопределимые задачи.

18. Графическое определение опорных реакций.

19. Решение задач.

Изучение этих вопросов необходимо в дальнейшем для изучения центра тяжести, произвольной пространственной системы сил, сил трения скольжения, моментов трения качения, решения задач в дисциплине «Сопротивление материалов».

Проекция силы на ось и на плоскость.

Перейдем к рассмо­трению аналитического (численного) метода решения задач статики. Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого вектора, проекцией силы на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в положительном направлении оси, и знак минус - если в отрицательном. Из определения следует, что проек­ции данной силы на любые параллельные и одинаково направлен­ные оси равны друг другу. Этим удобно пользоваться при вычисле­нии проекции силы на ось, не лежащую в одной плоскости с силой.

Рис. 1

 

Обозначать проекцию силы на ось Ох будем символом Fx. Тогда для сил, изображенных на рис.1, получим:

Но из чертежа видно, что

Следовательно,

т. е. проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным на­правлением оси. При этом проекция будет положительной, если угол между направлением силы и положительным направлением оси - острый, и отрицательной, если этот угол - тупой; если сила перпен­дикулярна к оси, то ее проекция на ось равна нулю.

Рис.2

 

Проекцией силы на плоскость Оху называется вектор , заключенный между проекциями начала и конца силы на эту плоскость (рис. 2). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим чис­ленным значением, но и направлением в плоскости Оху. По модулю , где — угол между направ­лением силы и ее проекции .

В некоторых случаях для нахож­дения проекции силы на ось бывает удобнее найти сначала ее проекцию на плоскость, в которой эта ось ле­жит, а затем найденную проекцию на плоскость спроектировать на данную ось.

Например, в случае, изображенном на рис. 2, найдем таким способом, что

Рис.3

Фигура, построенная на рис. 3, б, называется силовым (в общем случае векторным) многоугольником. Таким обра­зом, геометрическая сумма или главный вектор несколь­ких сил изображается замы­кающей стороной силового многоугольника, построенно­го из этих сил (правило сило­вого многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную.

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения си­стемы сходящихся сил.

Сходящимися называются силы, линии дей­ствия которых пересекаются в одной точке, называемой центром системы (см. рис. 3, а).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 3, а в точке А).

Последовательно применяя аксиому параллелограмма сил, прихо­дим к выводу, что система сходящихся сил имеет равнодей­ствующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы сходятся в точке A (рис. 3, а), то сила, равная главному вектору , найденному построением силового мно­гоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.

Примечания.

1. Результат графического определения равнодействующей не изменится, если силы суммировать в другой последовательности, хотя при этом мы получим другой силовой многоугольник - отличный от первого.

2. Фактически силовой многоугольник, составленный из векторов сил заданной системы, является ломаной линией, а не многоугольником в привычном смысле этого слова.

3. Отметим, что в общем случае этот многоугольник будет пространственной фигурой, поэтому графический метод определения равнодействующей удобен только для плоской системы сил.

 

Равновесие системы сходящихся сил.

Из законов меха­ники следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инер­ции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.

Отсюда получаем два важных вывода:

1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».

2) Уравно­вешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравнове­шенных сил.

Для равновесия приложенной к твердому телу системы сходя­щихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовле­творять сами силы, можно выразить в геометрической или аналити­ческой форме.

1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой, т. е. когда много­угольник замкнется.

Следовательно, для равновесия системы, сходящихся сил необ­ходимо и достаточно, чтобы силовой многоугольник, построен­ный из этих сил, был замкнут.

2. Аналитические условия равновесия. Аналитически равнодействующая системы сходящихся сил определяется формулой

.

Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно , т. е. когда действующие на тело силы будут удовлетворять равенствам:

Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия

Равенства выражают также необходимые условия (или уравнения) равновесия свободного твердого тела, находящегося под действием сходящихся сил.

Теорема о трех силах. Уравновешенная плоская система трех непараллельных сил является сходящейся.

Условие «плоская» в формулировке теоремы не является необходимым - можно убедиться, что любая уравновешенная система трех сил всегда будет плоской. Это следует из условий равновесия произвольной пространственной системы сил, которые будут рассмотрены далее.

 

Пример 1. На рис.4 показаны три силы. Проекции сил на оси х, у, z очевидны:

Рис.4

 

Рис. 2.4.
А чтобы найти проекцию силы на ось х нужно использовать пра­вило двойного проектирования .

Проектируем силу сначала на плос­кость хОу, в которой расположена ось (рис.4), получим вектор , величиной а затем его проектируем на ось х: .

Аналогично действуя, найдём проекцию на ось у: .

Проекция на ось z находится проще: .

Нетрудно убе­диться, что проекции сил на ось V равны:

;

При определении этих проекций удобно воспользоваться рис.5, видом сверху на распо­ложение сил и осей.

Рис.5

 

Вернёмся к системе сходящихся сил (рис. 6). Проведём оси координат с началом в точке пересечения линий действия сил, в точке О.

Мы уже знаем, что равнодействующая сил . Спроектируем это векторное равенство на оси. Получим проек­ции равнодействующей на оси x, y, z:

Они равны алгебраическим сум­мам проекций сил на соответствующие оси. А зная проекции равнодействую­щей, можно определить и величину её как диагональ прямоугольного парал­лелепипеда или

.

Направление вектора найдём с помощью направляющих косинусов (рис.6):

Рис.6

 

Пример 2. На шар, вес которого Р, лежащий на горизонтальной плоско­сти и привязанный к ней нитью АВ, действует сила F (рис.7). Определим реакции связей.

Рис.7

 

Следует сразу заметить, что все задачи статики решаются по одной схеме, в определённом порядке.

Продемонстрируем ее на примере решения этой задачи.

1. Надо выбрать (назначить) объект равновесия – тело, равновесие ко­торого следует рассмот­реть, чтобы найти неиз­вестные.

В этой задаче, ко­нечно, объект равновесия – шар.

2. Построение рас­чёт­ной схемы. Расчётная схема – это объект рав­новесия, изображённый отдельно, свободным телом, без свя­зей, со всеми силами, действую­щими на него: реакциями и остальными силами.

Показываем реакцию нити и нормаль­ную реакцию плоскости – (рис.7). Кроме них на шар действуют заданные силы и .

3. Надо установить какая получилась система сил и составить со­ответствующие уравнения равновесия.

Здесь получилась система сходящихся сил, расположенных в плос­кости, для которой составляем два уравнения (оси можно проводить произвольно):

4. Решаем систему уравнений и находим неизвестные.

По условию задачи требовалось найти давление шара на плоскость. А мы нашли реакцию плоскости на шар. Но, по определению следует, что эти силы равны по величине, только давление на плоскость будет направлено в противоположную сторону, вниз.

Пример 3. Тело весом Р прикреплено к вертикальной плоскости тремя стержнями (рис.8). Определим усилия в стержнях.

Рис.8

 

В этой задаче объект равновесия – узел С вместе с гру­зом. Он нарисован отдельно с реак­циями, усилиями в стержнях и весом . Силы образуют пространственную систему сходящихся сил. Составляем три уравнения равно­весия:

Из первого уравнения следует: S2 = S3. Тогда из третьего:

, а из второго:

Когда мы направляли усилие в стержне от узла, от объекта равнове­сия, предполагали, что стержни работают на растяжение. Усилие в стержне CD получилось отрицательным. Это значит – стержень сжат. Так что знак усилия в стержне указывает как работает стержень: на растяжение или на сжатие.

Пример 4. Определить реакции стержней, соединенных шарниром В, если к нему подвешен груз весом Q (рис.9, а).

Решение. В соответствии с предложенным выше планом выбираем тело, равновесие которого мы будем рассматривать. Этот выбор, в основном, определяется условиями задачи. Если в этой задаче рассмотреть равновесие подвешенного груза, то мы сумеем найти только силу натяжения нити, которая равна весу тела: T = Q (рис.9, б).

Чтобы определить реакции стержней, рассмотрим равновесие точки В. Можно считать, что к ней посредством нити приложена активная сила Q и реакции отброшенных стержней SA и SC (рис.9, в).

Решим эту задачу аналитически. Выбирая начало отсчета в точке В, составим уравнения равновесия, которые примут вид:

-SA cosα + SC cosβ = 0;

SA sinα + SC sinβ = Q.

Чтобы найти отсюда SC сложим полученные уравнения, умножив предварительно первое из них на sinα, а второе – на cosα:

SC (sinα cosβ + cosα sinβ ) = Q cosα.

Отсюда следует, что SC = Q cosα /sin(α +β ), а поскольку α и β в эти уравнения входят симметрично, то SA = Q cosβ /sin(α +β ).

Для проверки правильности аналитического решения задачи воспользуемся графическим методом.

Треугольник, образованный из трех сил: Q, SA и SC должен быть замкнут, поэтому решение сводится к построению треугольника по известной стороне (Q) и направлению двух других сторон(SA и SC). Для этого нужно в масштабе построить вектор Q, а затем из начала и из конца этого вектора провести прямые, параллельные SA и SC до их пересечения (рис.9, г).

Измерив длины найденных отрезков и пересчитав в масштабе, можно считать поставленную задачу решенной. Направление полученных векторов определяется из условия замкнутости силового многоугольника, то есть конец последнего вектора должен совпадать с началом первого.

Рис.9

Можно, впрочем, определить величину SA и SC и без масштабной линейки, если просто решить построенный треугольник.

С этой целью воспользуемся теоремой синусов:

откуда, заменяя синус дополнительного угла косинусом, получим:

То есть, результат графического решения совпадает с аналитическим, значит задача решена правильно.

Пример 5. Центр невесомого идеального блока удерживается при помощи двух стержней, соединенных шарнирно в точке В. Через блок переброшена нить, один конец которой закреплен, а к другому – подвешен груз весом Q (рис.10, а). Определить реакции стержней, пренебрегая размерами блока.

Решение. Рассмотрим равновесие блока В, к которому приложены силы натяжения нитей Т1 и Т2 и реакции отброшенных стержней SA и SС, которые, как и в предыдущем примере мы считаем растянутыми (рис.10, б).

Фактически в качестве активной силы выступает вес груза Q, который приложен к блоку с помощью нити, поэтому Т1 = Q. По поводу силы Т2 надо отметить, что идеальным – то есть без трения блоком называется механизм, который меняет направление силы натяжения нити, но не ее величину, поэтому Т1 = Т2 = Q.

Пренебрегая размерами блока, получим уравновешенную систему сходящихся сил, приложенных в точке В (рис.10, в).

Определим реакции SA и SС аналитически. Отметим, что если в первое из аналитических уравнений равновесия входят оба неизвестных, то в уравнение Σ Yi = 0 неизвестная реакция SС не войдет, поэтому имеет смысл начать решение задачи именно с этого уравнения:

SAcos30°+ Т2 cos60°- Т1 = 0.

Подставляя сюда значения тригонометрических функций и Т1 = Т2 = Q, получим:

Откуда

Теперь вернемся к уравнению Σ Xi = 0:

- SAcos60°+ Т2 cos30°+ SС = 0,

или

Подставив найденное выше значение SA, получим:

При этом минус в последнем выражении означает, что стержень ВС не растянут, как мы предполагали, а сжат.

Для проверки полученного результата решим эту задачу графически. С этой целью от центра О последовательно откладываем в масштабе известные силы Т1 и Т2, затем от начала первого и от конца последнего вектора проводим прямые, параллельные SA и SС до их пересечения (рис.10, г).

Рис.10

 

Нетрудно видеть, что построенный силовой многоугольник имеет ось симметрии и |SA|=|SС|. При этом направление вектора SСна силовом многоугольнике противоположно первоначальному направлению, указанному на чертеже, то есть стержень ВС не растянут, а сжат.

Примечания.

1. В системе аналитических уравнений равновесия оси координат не обязательно должны быть взаимно перпендикулярными, поэтому, если в последнем примере выбрать ось Ох, совпадающую по направлению с силой Т2 , мы получим систему уравнений, из которых неизвестные SA и SС находятся независимо одно от другого.

2. Впоследствии мы увидим, что аналитическое решение можно проверить не только с помощью графического решения, но и аналитически. Впрочем, для системы сходящихся сил изложенный метод решения задач является, по-видимому, оптимальным.

 

Рис.11

 

Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом случае плоскость поворота для всех сил является общей и в дополнительном задании не нуждается.

Тогда для количественного измерения вращательного эффекта можно ввести следующее понятие о моменте силы: моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.

Момент силы относительно центра О будем обозначать сим­волом m0(F). Следовательно,

В дальнейшем условимся считать, что момент имеет знак плюс, если сила стремится повернуть тело вокруг центра О против хода ча­совой стрелки, и знак минус, - если по ходу часовой стрелки. Так, для силы , изображенной на рис.20, а, момент относительно центра О имеет знак плюс, а для силы, показанной на рис.20, б, - знак ми­нус.

Отметим следующие свойства момента силы:

1) Момент силы не изменяется при переносе точки приложения силы вдольее линии действия.

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).

3) Момент силы численно выражается удвоенной площадью тре­угольника ОАВ (рис. 20, б)

Этот результат следует из того, что

Рассмотренное определение момента силы подходит только для плоской системы сил.

Теорема Вариньона о моменте равнодействующей.

Докажем следующую теорему Вариньона: момент равнодействующей плоской системы сходящихся сил от­носительно любого центра равен алгеб­раической сумме моментов слагаемых сил относительно того же центра.

Рис.12

 

Рассмотрим систему сил , сходящихся в точке А (рис.12). Возьмем произвольный центр О и проведем через него ось Ох, перпендикулярную к прямой ОА; положительное направление оси Ох выбираем так, чтобы знак проекции любой из сил на эту ось совпадал со знаком ее момента относительно центра О.

Для доказательства теоремы найдем соответствующие выражения моментов m0( ), m0( ), …. По формуле . Но, как видно из рисунка, где F1x - проекция силы на ось Ох; сле­довательно

.

Аналогично вычисляются моменты всех других сил.

Обозначим равнодействующую сил , через , где . Тогда, по теореме о проекции суммы сил на ось, получим . Умножая обе части этого равенства на ОА, найдем:

или,

.

 

Пара сил. Момент пары.

Парой сил (или просто парой) называются две силы, равные по ве­личине, параллельные и направленные в противоположные стороны (рис.13). Очевидно, и .

Рис.13

 

Несмотря на то, что сумма сил равна нулю, эти силы не уравновешиваются. Под действием этих сил, пары сил, тело начнёт вращаться. И вращательный эффект будет определяться моментом пары:

.

Расстояние a между линиями действия сил называется плечом пары.

Если пара вращает тело против часовой стрелки, момент её считается положительным (как на рис.13), если по часовой стрелке – отрицательным.

Для того, чтобы момент пары указывал и плоскость, в которой происходит вращение, его представляют вектором.

Вектор момента пары направляется перпендикулярно плоскости, в которой расположена пара, в такую сторону, что если посмотреть от­туда, увидим вращение тела против часовой стрелки (рис. 14).

Нетрудно доказать, что вектор мо­мента пары – есть вектор этого векторного произведения (рис. 14). И за­метим, что он равен вектору момента силы относительно точки А, точки приложения второй силы:

.

О точке приложения вектора бу­дет сказано ниже. Пока приложим его к точке А.

Рис.14

Свойства пар

1) Проекция пары на любую ось равна нулю. Это следует из определения пары сил.

2) Найдём сумму моментов сил оставляющих пару, относительно какой-либо точки О (рис.15).

Рис.15

 

Покажем радиусы-векторы точек А1 и А2 и вектор , соединяющий эти точки. Тогда момент пары сил относительно точки О

.

Но . Поэтому .

Но .

Значит .

Момент пары сил относительно любой точки равен моменту этой пары.

Отсюда следует, что, во-первых, где бы не находилась точка О и, во-вторых, где бы не располагалась эта пара в теле и как бы она не была повёрнута в своей плоскости, действие её на тело будет одинаково. Так как момент сил, составляющих пару, в этих случаях один и тот же, рав­ный моменту этой пары .

Поэтому можно сформулировать ещё два свойства.

3) Пару можно перемещать в пределах тела по плоскости действия и переносить в любую другую параллельную плоскость.

4) Так как действие на тело сил, составляющих пару, определяется лишь её моментом, произведением одной из сил на плечо, то у пары можно изменять силы и плечо, но так, чтобы момент пары остался прежним. Например, при силах F1=F2=5 H и плече а = 4 см момент пары m = 20 H∙ см. Можно силы сделать равными 2 Н, а плечо а = 10 см. При этом момент останется прежним 20 Нсм и действие пары на тело не из­менится.

Все эти свойства можно объединить и, как следствие, сделать вы­вод, что пары с одинаковым вектором момента и неважно где расположенные на теле, оказывают на него равное действие. То есть такие пары эквивалентны.

Исходя из этого, на расчётных схемах пару изображают в виде дуги со стрелкой, указывающей направление вращения, и рядом пишут величину момента m (рис.15.1). Или, если это пространственная конструкция, по­казывают только вектор момента этой пары. И вектор момента пары можно прикладывать к любой точке тела. Значит вектор момента пары – свободный вектор. Такое упрощенное изображение оправдано тем, что пара сил характеризуется моментом, а не ее положением в плоскости. Но если необходимо определять не внешние силы, а внутренние в разных сечениях элемента, как это делается в сопротивлении материалов, то важен знак и место приложения пары сил.

Рис.15.1. Эквивалентные пары сил

 

И ещё одно дополнительное замечание. Так как момент пары ра­вен вектору момента одной из сил её относительно точки приложения второй силы, то момент пары сил относительно какой-либо оси z – есть проекция вектора момента пары на эту ось:

,

где – угол между вектором и осью z.

Сложение пар.

Пусть даны две пары с моментами m1и m2, расположенные в пере­секающихся плоскостях (рис.16).

Сделаем у пар плечи одинаковыми, равными а = АВ. Тогда модули сил, образующих первую пару, должны быть равны: , а об­разующих вторую пару: .

Эти пары показаны на рис.16, где . И расположены они в своих плоскостях так, что плечи пар совпадают с прямой АВ на линии пересе­чения плоскостей.

Рис.16

 

Рис. 4.4.
Сложив силы, приложенные к точкам А и В, построением паралле­лограммов, получим их равнодействующие . Так как , то эти силы и будут образовывать пару, мо­мент которой , где – радиус-вектор точки В, совпадающий с АВ.

Так как , то момент полученной пары

.

Следовательно, в результате сложения пар, расположенных в пере­секающихся плоскостях, получится пара сил. Момент её будет равен векторной сумме моментов слагаемых пар.

При сложении нескольких пар, действующих в произвольных плоско­стях, получим пару с моментом

.

Конечно, эта результирующая пара будет располагаться в плоско­сти перпендикулярной вектору .

Равенство нулю результирующей пары будет означать, что пары, действующие на тело, уравновешиваются. Следовательно, условие рав­новесия пар

=0.

Это является необходимым и достаточным условием равновесия систем пар.

Если пары расположены в одной плоско­сти, векторы моментов их будут параллельны. И момент результирующей пары можно опре­делить как алгебраическую сумму моментов пар.

Рис.17

 

Например, пары, показанные на рис.17, расположены в одной плоскости и моменты их:

m1=2 Hсм, m2=5 Hсм, m3=3 Hсм. Пары урав­нове­шива­ются, потому что алгебраиче­ская сумма их моментов равна нулю:


Пример 6. Определить опорные реакции рамы, загруженной системой пар (рис.18).

Рис.18

 

Решение. Заменим систему пар, приложенных к раме, результирующей парой по формуле:

MR = M1 - M2 + M3 = 3 - 4 + 7 = 6 кНм.

Из условия равновесия систем пар =0 следует, что активную пару MR, приложенную к раме, может уравновесить только пара сил, образованных опорными реакциями, поэтому линия действия RA должна быть параллельной RВ и

MR + M (RA, RВ) = 0,

откуда RA = RВ = MR /d, где d = 6cos30°= 3 м - плечо пары (RA, RВ).

Итак, RA = RВ = 6/(3 ) = (2 )/3 м.

Рис.19

 

Приложим к этой точке две урав­новешивающиеся силы и , парал­лельные силе и равные ей по вели­чине:

В результате получим силу , приложенную к точке О. То есть мы как бы перенесли заданную силу из точки А в точку О, но при этом появилась пара, образованная си­лами и . Момент этой пары , равен моменту заданной силы относительно точки О.

Этот процесс замены силы равной ей силой и парой называ­ется приведением силы к точке О.

Точка О называется точкой приведения; сила , приложенная к точке приведения, – приведённой силой. Появившаяся пара – присоеди­нённой парой.

 

Приведение плоской системы сил к данному центру.

Пусть на твердое тело действует какая-нибудь система сил , лежащих в одной плоскости. Возьмем в этой плоскости произвольную точку О, которую назовем центром приведения, и, перенесем все силы в центр О (рис. 20, а). В результате на тело будет действовать система сил приложенных в центре О, и система пар, моменты которых будут равны:

Рис.20

Силы, приложенные в центре О, можно заменить одной силой , приложенной в том же центре; при этом или

Точно так же, по теореме о сложении пар, все пары можно заменить одной парой, лежащей в той же плоскости. Момент этой пары или .

Величина , равная геометрической сумме всех сил системы, называется, как известно, главным вектором системы; величину Мо, равную сумме моментов всех сил системы относительно центра О, будем называть главным моментом системы относительно цент­ра О.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 1905; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.141 с.)
Главная | Случайная страница | Обратная связь