Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Кодирование символьных данных



СОДЕРЖАНИЕ

ИНФОРМАТИКА, ИНФОРМАЦИЯ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ-- 2

КОДИРОВАНИЕ ДАННЫХ В ЭВМ-- 8

СИСТЕМЫ СЧИСЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В КОМПЬЮТЕРЕ- 10

АЛГЕБРА ЛОГИКИ-- 15

ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ-- 18

ОСНОВЫ УСТРОЙСТВА И ПРИНЦИПЫ ПОСТРОЕНИЯ КОМПЬЮТЕРА-- 22

УСТРОЙСТВА, ВХОДЯЩИЕ В СОСТАВ КОМПЬЮТЕРА-- 28

Основные блоки, ИЗ КОТОРЫХ сосТОИТ компьютер- 50


ИНФОРМАТИКА, ИНФОРМАЦИЯ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Термин «информатика» (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает «информационная автоматика».

Широко распространён также англоязычный вариант этого термина – «Сomputer science», что означает буквально «компьютерная наука».

Информатика – это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

В 1978 году международный научный конгресс официально закрепил за понятием «информатика» области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая компьютеры и их программное обеспечение, а также организационные, коммерческие, административные и социально-политические аспекты компьютеризации – массового внедрения компьютерной техники во все области жизни людей.

Таким образом, информатика базируется на компьютерной технике и немыслима без нее.

Информатика – научная дисциплина с широчайшим диапазоном применения. Её основные направления:

· разработка вычислительных систем и программного обеспечения;

· теория информации, изучающая процессы, связанные с передачей, приёмом, преобразованием и хранением информации;

· методы искусственного интеллекта, позволяющие создавать программы для решения задач, требующих определённых интеллектуальных усилий при выполнении их человеком (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);

· системный анализ, заключающийся в анализе назначения проектируемой системы и в установлении требований, которым она должна отвечать;

· методы машинной графики, анимации, средства мультимедиа;

· средства телекоммуникации, в том числе, глобальные компьютерные сети, объединяющие всё человечество в единое информационное сообщество;

· разнообразные приложения, охватывающие производство, науку, образование, медицину, торговлю, сельское хозяйство и все другие виды хозяйственной и общественной деятельности.

Информатику обычно представляют состоящей из двух частей:

· технические средства;

· программные средства.

Технические средства, то есть аппаратура компьютеров, в английском языке обозначаются словом Hardware, которое буквально переводится как «твёрдые изделия».

А для программных средств выбрано (а точнее, создано) очень удачное слово Software (буквально – «мягкие изделия»), которое подчёркивает равнозначность программного обеспечения и самой машины и вместе с тем подчёркивает способность программного обеспечения модифицироваться, приспосабливаться, развиваться.

Программное обеспечение – это совокупность всех программ, используемых компьютерами, а также вся область деятельности по их созданию и применению.

Помимо этих двух общепринятых ветвей информатики выделяют ещё одну существенную ветвь – алгоритмические средства. Для неё российский академик А.А. Дородницин предложил название Brainware (от англ. brain – интеллект). Эта ветвь связана с разработкой алгоритмов и изучением методов и приёмов их построения.

Алгоритмы – это правила, предписывающие выполнение последовательностей действий, приводящих к решению задачи.

Нельзя приступить к программированию, не разработав предварительно алгоритм решения задачи.

Роль информатики в развитии общества чрезвычайно велика. С ней связано начало революции в области накопления, передачи и обработки информации. Эта революция, следующая за революциями в овладении веществом и энергией, затрагивает и коренным образом преобразует не только сферу материального производства, но и интеллектуальную, духовную сферы жизни.

Рост производства компьютерной техники, развитие информационных сетей, создание новых информационных технологий приводят к значительным изменениям во всех сферах общества: в производстве, науке, образовании, медицине и т.д.

 

Понятие «информация»

Термин «информация» происходит от латинского слова «informatio», что означает сведения, разъяснения, изложение.

Информация – это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В это слово вкладывается различный смысл в технике, науке и в житейских ситуациях.

В обиходе информацией называют любые данные или сведения, которые кого-либо интересуют.

Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п. «Информировать» в этом смысле означает «сообщить нечто, неизвестное раньше».

Информация – сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые воспринимают информационные системы (живые организмы, управляющие машины и др.) в процессе жизнедеятельности и работы.

Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертёж, радиопередача и т.п.) может содержать разное количество информации для разных людей – в зависимости от их предшествующих знаний, от уровня понимания этого сообщения и интереса к нему.

Так, сообщение, составленное на японском языке, не несёт никакой новой информации человеку, не знающему этого языка, но может быть высокоинформативным для человека, владеющего японским. Никакой новой информации не содержит и сообщение, изложенное на знакомом языке, если его содержание непонятно или уже известно.

Информация есть характеристика не сообщения, а соотношения между сообщением и его потребителем. Без наличия потребителя, хотя бы потенциального, говорить об информации бессмысленно.

В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

 

Виды информации

Информация может существовать в самых разнообразных формах:

· в виде текстов, рисунков, чертежей, фотографий;

· в виде световых или звуковых сигналов;

· в виде радиоволн;

· в виде электрических и нервных импульсов;

· в виде магнитных записей;

· в виде жестов и мимики;

· в виде запахов и вкусовых ощущений;

· в виде хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами.

 

Передача информации

Информация передаётся в виде сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал. Этот сигнал посылается по каналу связи. В результате в приёмнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Примеры:

1. сообщение, содержащее информацию о прогнозе погоды, передаётся приёмнику (телезрителю) от источника – специалиста-метеоролога посредством канала связи – телевизионной передающей аппаратуры и телевизора;

2. живое существо своими органами чувств (глаз, ухо, кожа, язык и т.д.) воспринимает информацию из внешнего мира, перерабатывает её в определенную последовательность нервных импульсов, передает импульсы по нервным волокнам, хранит в памяти в виде состояния нейронных структур мозга, воспроизводит в виде звуковых сигналов, движений и т.п., использует в процессе своей жизнедеятельности.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

 

Измерение количества информации

Какое количество информации содержится, к примеру, в тексте романа «Война и мир», в фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро.

А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является вывод:

В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных.

В настоящее время получили распространение подходы к определению понятия «количество информации», основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле её новизны или, иначе, уменьшения неопределённости наших знаний об объекте.

Так, американский инженер Р. Хартли (1928 г.) процесс получения информации рассматривает как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определяет как двоичный логарифм N.

Формула Хартли:

I = log2N (1)

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log2100 » 6, 644. То есть сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6, 644 единиц информации.

Приведем другие примеры равновероятных сообщений:

1. при бросании монеты: «выпала решка», «выпал орел»;

2. на странице книги: «количество букв чётное», «количество букв нечётное».

Определим теперь, являются ли равновероятными сообщения «первой выйдет из дверей здания женщина» и «первым выйдет из дверей здания мужчина». Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Формула Шеннона:

(2)

где pi – вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности p1, ..., pN равны, то каждая из них равна 1/N, и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями.

В качестве единицы информации условились принять один бит (англ. bitbinary, digit – двоичная цифра).

Бит в теории информации – количество информации, необходимое для различения двух равновероятных сообщений.

А в вычислительной технике битом называют наименьшую «порцию» памяти, необходимую для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд.

Бит – слишком мелкая единица измерения. На практике чаще применяется более крупная единица – байт, равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=28).

Широко используются также ещё более крупные производные единицы информации:

· 1 Килобайт (Кбайт) = 1024 байт = 210 байт,

· 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,

· 1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

· 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,

· 1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

· 1 Эксабайт (Эбайт) = 1024 Пбайт = 260 байт.

За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации.

Информацию можно:

· создавать; · передавать; · воспринимать; · использовать; · запоминать; · принимать; · копировать; · формализовать; · распространять; · преобразовывать; · комбинировать; · обрабатывать; · делить на части; · упрощать; · собирать; · хранить; · искать; · измерять; · разрушать; · и др.  

Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

 

Свойства информации

· достоверность;

· полнота;

· ценность;

· своевременность;

· понятность;

· доступность;

· краткость;

· и др.

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел.

Информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.

Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека.

Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка.

Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной.

Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по разному излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях.

 

Обработка информации

Обработка информации – получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов.

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации.

Средства обработки информации – это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер – универсальная машина для обработки информации.

Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем.

 

Информационные ресурсы и информационные технологии

Информационные ресурсы – это идеи человечества и указания по их реализации, накопленные в форме, позволяющей их воспроизводство.

Это книги, статьи, патенты, диссертации, научно-исследовательская и опытно-конструкторская документация, технические переводы, данные о передовом производственном опыте и др.

Информационные ресурсы (в отличие от всех других видов ресурсов – трудовых, энергетических, минеральных и т.д.) тем быстрее растут, чем больше их расходуют.

Информационная технология – это совокупность методов и устройств, используемых людьми для обработки информации.

Человечество занималось обработкой информации тысячи лет. Первые информационные технологии основывались на использовании счётов и письменности. Около пятидесяти лет назад началось исключительно быстрое развитие этих технологий, что в первую очередь связано с появлением компьютеров.

В настоящее время термин «информационная технология» употребляется в связи с использованием компьютеров для обработки информации. Информационные технологии охватывают всю вычислительную технику и технику связи и, отчасти, – бытовую электронику, телевидение и радиовещание.

Они находят применение в промышленности, торговле, управлении, банковской системе, образовании, здравоохранении, медицине и науке, транспорте и связи, сельском хозяйстве, системе социального обеспечения, служат подспорьем людям различных профессий и домохозяйкам.

Народы развитых стран осознают, что совершенствование информационных технологий представляет самую важную, хотя дорогостоящую и трудную задачу.

В настоящее время создание крупномасштабных информационно-технологических систем является экономически возможным, и это обусловливает появление национальных исследовательских и образовательных программ, призванных стимулировать их разработку.

 

Информатизация общества

Информатизация общества – организованный социально-экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав граждан, органов государственной власти, органов местного самоуправления организаций, общественных объединений на основе формирования и использования информационных ресурсов.

Цель информатизации – улучшение качества жизни людей за счет увеличения производительности и облегчения условий их труда.

Информатизация – это сложный социальный процесс, связанный со значительными изменениями в образе жизни населения. Он требует серьёзных усилий на многих направлениях, включая ликвидацию компьютерной неграмотности, формирование культуры использования новых информационных технологий и др.


КОДИРОВАНИЕ ДАННЫХ В ЭВМ

Для автоматизации работы с данными, относящимися к разным типам, важно унифицировать форму их представления. Для этого в информатике производится кодирование числовых, текстовых, графических данных, звуковой информации, т. е. выражение данных одного типа через данные другого типа.

 

Кодирование числовых данных

Система кодирования числовых данных в вычислительной технике называется двоичным кодированием. Информация кодируется, как правило, в двоичной или двоично-десятичной системах счисления.

Система счисления – это способ изображения чисел с помощью символов, имеющих определенные количественные значения. Это совокупность приемов и правил наименования и обозначения чисел, позволяющих становить взаимно однозначное соответствие между любым числом и его представлением в виде конечного числа символов.

Упорядоченный набор символов, используемых для представления любых чисел в заданной позиционной системе счисления, называют ее алфавитом, а число символов – ее основанием. Известны системы счисления – двоичная, троичная, четверичная, пятеричная, восьмеричная, десятичная, двенадцатеричная, шестнадцатеричная.

Десятичная система счисления – это самая привычная система, имеет основание «10», используемые символы – 0-9. двоичная система счисления имеет основание «2», используемые символы – 0-1. Восьмеричная система счисления имеет основание «8», используемые символы – 0-7. Шестнадцатеричная система счисления имеет основание «16», используемые символы – 0-9, 10=А, 11=В, 12=С и т. д.

 

Двоичная система счисления

Итак, в современной вычислительной технике, в устройствах автоматики и связи широко применяется двоичная система счисления. Это система счисления с наименьшим возможным основанием. В ней для изображения числа используются только две цифры: 0 и 1.

Произвольное число Х в двоичной системе представляется в виде полинома:

Х= аn × 2n + аn-1 × 2n-1 + … + а1 × 21 + а0 × 20 + а-1 × 2-1 +... + а-m × 2-m... (6)

где каждый коэффициент аi может быть либо 0, либо 1.

Таблица сложения чисел в двоичной системе счисления:

0+0=0 1+0=1
0+1=1 1+1=10

Таблица умножения чисел в двоичной системе счисления:

0× 0=0 1× 0=0
0× 1=0 1× 1=1

Так как в двоичной системе счисления для изображения любых чисел используются только две цифры, то при построении ЭВМ можно применять лишь элементы, которые могут находиться только в двух состояниях (например, высокое или низкое напряжение в цепи тока, наличие или отсутствие электрическою импульса и т. п.). Это обстоятельство, а также простота выполнения арифметических операций являются причиной того, что в большинстве современных ЭВМ используется двоичная система счисления.

 

Команды

Команда — это описание элементарной операции, которую должен выполнить компьютер.

В общем случае, команда содержит следующую информацию:

· код выполняемой операции;

· указания по определению операндов (или их адресов);

· указания по размещению получаемого результата.

В зависимости от количества операндов, команды бывают:

· одноадресные;

· двухадресные;

· трехадресные;

· переменноадресные.

Команды хранятся в ячейках памяти в двоичном коде.

В современных компьютерах длина команд переменная (обычно от двух до четырех байтов), а способы указания адресов переменных весьма разнообразные.

В адресной части команды может быть указан, например:

· сам операнд (число или символ);

· адрес операнда (номер байта, начиная с которого расположен операнд);

· адрес адреса операнда (номер байта, начиная с которого расположен адрес операнда), и др.

Рассмотрим несколько возможных вариантов команды сложения (англ. add – сложение), при этом вместо цифровых кодов и адресов будем пользоваться условными обозначениями:

· одноадресная команда add x (содержимое ячейки x сложить с содержимым сумматора, а результат оставить в сумматоре)

 

add x

 

· двухадресная команда add x, y (сложить содержимое ячеек x и y, а результат поместить в ячейку y )

add x y

 

· трехадресная команда add x, y, z (содержимое ячейки x сложить с содержимым ячейки y, сумму поместить в ячейку z )

 

add x y z

 

Выполнение команд

 

Как пpавило, этот процесс разбивается на следующие этапы:

· из ячейки памяти, адрес которой хранится в счетчике команд, выбирается очередная команда; содержимое счетчика команд при этом увеличивается на длину команды;

· выбранная команда передается в устройство управления на регистр команд;

· устройство управления расшифровывает адресное поле команды;

· по сигналам УУ операнды считываются из памяти и записываются в АЛУ на специальные регистры операндов;

· УУ расшифровывает код операции и выдает в АЛУ сигнал выполнить соответствующую операцию над данными;

· результат операции либо остается в процессоре, либо отправляется в память, если в команде был указан адрес результата;

· все предыдущие этапы повторяются до достижения команды «стоп».

 

Архитектура и структура компьютера

 

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера – это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства – от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) – одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд – программа. Это однопроцессорный компьютер.

К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры – устройства управления периферийными устройствами.

Контроллер – устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рисунке

 

Архитектура многопроцессорного компьютера

Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко.

Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе – то есть по одному потоку команд.

Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рисунке

Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.


УСТРОЙСТВА, ВХОДЯЩИЕ В СОСТАВ КОМПЬЮТЕРА

 

Центральный процессор

 

Центральный процессор (CPU, от англ. Central Processing Unit) – это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Центральный процессор в общем случае содержит в себе:

· арифметико-логическое устройство;

· шины данных и шины адресов;

· регистры;

· счетчики команд;

· кэш – очень быструю память малого объема (до 8 Мбайт);

· математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.

Первым этапом, затронувшим период с 40-х по конец 50-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 50-х до середины 60-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 60-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы – элементарные регистры, счётчики, сумматоры). Позднее появились микросхемы, содержащие функциональные блоки процессора – микропрограммное устройство, арифметико-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 70-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС ( больших и сверхбольших интегральных схем, соответственно), микропроцессора – микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-х разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например, суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации.

Важнейшим параметром, определяющим скорость работы любого процессора, является тактовая частота. Она представляет собой импульсы прямоугольной формы, с которой синхронизируются все операции процессора. По другому тактовая частота называется частотой синхроимпульсов. Тактовой же частотой она называется потому, что любая операция в процессоре не может быть выполнена быстрее, чем за один такт (период) синхроимпульсов.

С объединением элементов процессора в один кристалл наиболее узким местом в производительности процессора стала не пересылка данных между элементами процессора, а скорость обмена данными между процессором и остальными устройствами по шине. Поскольку любая операция, в том числе и пересылка данных, не может происходить быстрее, чем за такт, логично предположить, что желательно передавать как можно больше информации за один такт. Так как единицей информации является один бит (двоичный разряд), то, чем больше передается разрядов за один такт (по шине данных), тем быстрее работает процессор.

Разрядность шины адреса определяет максимальный номер байта, который может быть затребован процессором. Так, при 8-ми разрядной шине возможна адресация 256 байт, при 16-ти разрядной – 64 Кбайт, а при 32-х разрядной – 4 Гбайт.

 

Память

 

Память компьютера построена из двоичных запоминающих элементовбитов, объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.

Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова – два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово).

Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации.

Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:

Байт 0 Байт 1 Байт 2 Байт 3 Байт 4 Байт 5 Байт 6 Байт 7
ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО
СЛОВО СЛОВО
ДВОЙНОЕ СЛОВО

 

Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в последнее время, Терабайт и Петабайт.

Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации.


Поделиться:



Популярное:

  1. I ЭТАП: ОБСЛЕДОВАНИЯ (СБОР ДАННЫХ)
  2. III. Вид работы: «Использование информационной базы данных»
  3. IV. Анализ и обработка данных.
  4. Авторское право - правовое положение авторов и созданных их творческим трудом произведений литературы, науки и искусства.
  5. Адресная, данных, управления
  6. Анализ и интерпретация данных экспериментально-психологического исследования
  7. Анализ исходных данных и разработка математической модели
  8. Анализ экспериментальных данных
  9. База данных - это воплощенные на материальном носителе совокупности данных, подбор и расположение которых представляют результат творческого труда.
  10. Базовые функции выборки данных
  11. Базы данных при решении задач в области конструкторско-технологического обеспечения машиностроения
  12. Базы данных. Использование ЭВМ для хранения неструктурированной (текстовой) информации. Информационно-поисковые системы.


Последнее изменение этой страницы: 2016-06-04; Просмотров: 1282; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.116 с.)
Главная | Случайная страница | Обратная связь