Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ДВИЖЕНИЕ ТЕЛ В ЖИДКОСТЯХ И ГАЗАХ.



Рис. 108. Линии тока при обтекании крыла самолета и возникновение подъемной силы. α – угол атаки.

В отличие от жидкостей, газы могут сильно изменять свой объем. Сжимаемостью газов можно пренебречь, если наибольшие скорости в потоке малы по сравнению со скоростью звука в этом газе. Уравнение Бернулли позволяет дать лишь качественное объяснение возникновению подъемной силы крыла. Из-за специального профиля крыла и наличия угла атаки, т.е. угла наклона крыла по отношению к набегающему потоку воздуха, скорость воздушного потока над крылом оказывается больше, чем под крылом. Линии тока над крылом располагаются ближе друг к другу, чем под крылом. Из уравнения Бернулли следует, что давление в нижней части крыла будет больше, чем в верхней; и в результате появляется сила F, действующая на крыло. Вертикальная составляющая Fy этой силы называется подъемной силой. Подъемная сила позволяет скомпенсировать силу тяжести, действующую на самолет, и тем самым она обеспечивает возможность полета тяжелых летательных аппаратов в воздухе. Горизонтальная составляющая Fx представляет собой силу сопротивления среды (лобовое сопротивление), которое зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом Сх, Rx = Cx(rv2)S/2, (17.8.)

где r - плотность среды; v - скорость движения тела; S - наибольшее поперечное сечение тела. Составляющую общей силы Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрений. Подъемная сила определяется как, Ry = Cy(rv2)S/2, (17.9.)

где Су - безразмерный коэффициент подъемной силы. Существенную роль при обтекании крыла играют силы вязкого трения в поверхностном слое. В результате их действия возникает круговое движение ( циркуляция ) воздуха вокруг крыла.В верхней части крыла скорость циркулирующего воздуха складывается со скоростью набегающего потока, в нижней части эти скорости направлены в противоположные стороны. Это и приводит к возникновению разности давлений и появлению подъемной силы. Циркуляция воздуха, обусловленная силами вязкого трения, возникает и вокруг вращающегося тела. При вращении цилиндр увлекает прилегающие слои воздуха, вызывая его циркуляцию. Если такой цилиндр установить в набегающем потоке воздуха, то возникнет сила бокового давления, аналогичная подъемной силе крыла самолета.

Рис. 109. Обтекание вращающегося цилиндра набегающим потоком воздуха.

Это явление называется эффектом Магнуса. Эффект Магнуса проявляется, например, при полете закрученного мяча при игре в теннис или футбол. Во многих явлениях аэродинамики существенную роль играют силы вязкого трения. Они приводят к возникновению циркулирующих потоков воздуха вокруг крыла самолета или вокруг вращающегося тела, к появлению силы сопротивления среды. Особенно заметно проявляются силы вязкого трения при течении жидкостей. У некоторых жидкостей вязкость настолько велика, что применение уравнение Бернулли не возможно. Если тело движется в вязкой жидкости, то возникает сила сопротивления, модуль которой пропорционален скорости v и радиусу сферы r (закон Стокса) Fсопр. ~ v r. (17.10.)

Коэффициент пропорциональности в этой формуле зависит от свойств жидкости.

Одной из важнейших задач аэро- и гидродинамики является исследование движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движения морских судов.

На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим R ), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока), — лобовое сопротивление, а вторая (Ry) перпен­дикулярна этому направлению — подъемная сила (рис.).

Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости, то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.

Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличении скорости обтекания). Вследствие вязкости среды в области, прилегающей к поверх­ности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончающейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направ­ленное противоположно набегающему потоку. Оторвавшийся пограничный слой, сле­дуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. ).

Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Сx, определя­емым экспериментально: Rх = Сх[(ρ v2)/2]S. где r плотность среды; v скорость движения тела; S наибольшее поперечное сечение тела. Составляющую Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрения.

Подъемная сила может быть определена формулой, аналогичной:

Rу = Су[(ρ v2)/2]S. где Су безразмерный коэффициент подъемной силы.

Для крыла самолета требуется большая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атаки a (угол к потоку); Крыло тем лучше удовлетворяет этому условию, чем больше величина К=Суx называемая качеством крыла. Большие заслуги в конструировании требу­емого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921).

Рис. 110.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-04; Просмотров: 976; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь