Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Графический метод интегрирования уравнения движения (метод пропорций)



Сущность этого метода заключается в замене бесконечно малых приращений скорости и времени малыми, но конечными приращениями Dw и Dt.

Действительные кривые w=f(M) и w=f(Mс) заменяются ступенчатыми. На каждом участке значения М и Мс или их алгебраическая сумма принимаются постоянными и равными их среднему значению на этом участке, т.е. предполагается, что в уравнение движения электропривода подставляются средние значения М и Мс.

 

В соответствие с этим уравнение движения можно представить, в виде

Считая, что в интервале времени Dt разность Мсрс.ср остается величиной постоянной; получим пропорцию

Для графического построения все входящие в нее величины должны изображаться в соответствующих масштабах. Они связаны между собой соотношением

Пропорция, выраженная в отрезках на осях, будет иметь вид

Произвольно выбираются 3 масштабных коэффициента (обычно mM, mw, mt).

Этот метод сводится к графическому построению кривых w=f(t) и M=f(t) и определению времени переходного процесса. Рассмотрим этот метод на примере пуска электропривода вентилятора. Во втором квадранте изображается механическая характеристика двигателя (в данном случае линейная) и механическая характеристика вентилятора – кривая Мс. Вычтя графически из кривой М=f(w) кривую Мс=f(w), получим кривую динамического момента Мдин=М-Мс. Ее делим на участки, на каждом из которых принимаем Мдин=const т.е. кривую Мдин заменяем ступенчатой (см. график) линией с участками М-Мс=const. Точность конечных результатов тем выше, чем на большее число участков разбита кривая Мдин.

Деление нужно выполнить так, чтобы площадки, создаваемые ступенчатой линией по обе стороны от исходной кривой, были равновеликими. Полученные на отдельных участках значения средних динамических моментов оа1, оа2 и т.д. откладываются на оси ординат в виде отрезков ов1, ов2 и т.д. Полученные т.о. точки в1, в2, в3 и т.д. соединяются наклонными прямыми с т. А, находящейся на оси абсцисс на расстоянии ОА, пропорциональном величине .

Затем из начала координат проводится ОС1, параллельно АВ1 до пересечения в т.С1 с прямой, являющейся продолжением верхнего основания прямоугольника первой ступеньки. Точка С1 является точкой искомой кривой w=f(t) и определяет величину Dw1. Действительно, отрезок ОС1 характеризует закон изменения w на первом участке от w=0 до w=Dw1, что следует из подобия треугольников АОВ1 и Оt1C1.

Т.к. ; ; ; то

Проведя аналогичное построение для всех, последующих участков, найдем кривую w=f(t) и искомое время пуска электропривода. Взамен ломанной кривой скорости можно провести плавную кривую.

Для построения кривой М=f(t) необходимо для каждого момента времени t1, t2, и т.д. найти значения момента двигателя (отрезки измеряются от оси ординат до кривой М=f(w) при соответствующем приращении Dw). Например в момент времени t=0, w=0- это отрезок ОВ. В момент времени t1, w=Dw1- это отрезок ДE и т.д. Откладывая по вертикали от оси абсцисс при каждом моменте времени t1, t2 и т.д. значения найденных графически моментов двигателя, получим точки d, d1, d2, и т.д., соединяя которые плавной кривой, найдем зависимость M=f(t) в переходном процессе пуска. Изложенный метод применим и для расчета переходного процесса при торможении электропривода. Нужно только иметь в виду, что при торможении динамический момент обычно равен сумме М и Мс и имеет отрицательный знак. Поэтому при построении средние значения Мдин откладываются по оси ординат вниз от т.0.

Графоаналитический метод интегрирования уравнения движения (метод последовательных интервалов)

Метод применяется при нелинейных механических характеристиках двигателя и механизма. Для расчета нужно иметь эти механические характеристики. Имея их, строится кривая динамического момента, как и в методе пропорций.

Пусть кривая момента двигателя задана в виде ломанной линии (пуск в несколько ступеней), а кривая статического момента – в виде пунктирной кривой (см. график). Задаваясь последовательно приращениями скорости Dw1, Dw2 и т.д. находят среднее значение Мдин.ср. для каждого участка. Иначе говоря, кривая динамического момента (она здесь неизображена) делится на ряд участков, на каждом из которых Мдин. считается постоянным и равным среднему значению.

Полученные значения Мдин.ср. подставляются в формулу

 

И вычисляется время для каждого участка приращения w.

Обычно все расчеты сводятся в таблицу, на основании которой строится кривая w=f(t) и аналогично изложенному ранее, кривая М=f(t).

Уравнения переходных процессов электропривода с линейной механической характеристикой при w0=f(t) и Mc=const.

При пуске электропривода включением его в сеть на полное напряжение U=const и f1=const переходные процессы протекают при скачке напряжения, или как говорят, скачке управляющего воздействия, когда w0=const. Для ограничения бросков тока и момента в якорную или роторную цепь двигателя приходится вводить добавочное сопротивление. Переходные процессы при этом будут далеки от оптимальных. При питании двигателя от преобразователя напряжения или частоты ( в замкнутых системах) можно получить переходные процессы, близкие к оптимальным, путем плавного изменения управляющего воздействия. Они протекают в этом случае при w0=f(t). При этом ограничивается темп нарастания управляющего воздействия путем ограничения ускорения e0 Т.о. переходные процессы протекают в этом случае при U=var или f=var.

Проанализируем переходные процессы при линейном изменении управляющего воздействия w0 во времени, т.е. при линейном изменении U или f1, при котором w0=w0 нач+e0t.

Исходными дифференциальными уравнениями для получения расчетных соотношений являются ранее полученные уравнения

При соотношении постоянных времени величиной Тэ можно пренебречь и уравнение, определяющее закон изменения w, будет иметь вид

 

Правая часть этого уравнения – частное решение, соответствующее установившемуся режиму, когда все свободные составляющие затухнут. Для этого режима w=a+bt, где а и b – неопределенные коэффициенты, находимые из начальных условий. Имея в виду, что , получим при t=0

Отсюда

Общее решение дифференциального уравнения относительно w

или

При t=0 w=wнач, следовательно , откуда

.

Окончательно закон изменения скорости

Закон изменения момента в переходном режиме находится аналогично

.отсюда

Используя эти выражения, исследуем переходные процессы при различных режимах и различных по характеру моментах сопротивления.

Переходный процесс пуска электропривода с линейной механической характеристикой при реактивном моменте сопротивления и w0=f(t)

Исходными уравнениями для анализа переходного процесса являются

Изобразим механические характеристики, на которых электропривод работает в процессе пуска, а рядом будут изображаться кривые переходного процесса. Процесс пуска разбивается на три этапа. На первом этапе двигатель неподвижен (w=0), а момент его нарастает по линейному закону

т.к. w0 нач=0

Время запаздывания

По достижении моментом двигателя значения, равного Мс, двигатель приходит во вращение и начинается второй этап (II), который закончится, когда w0 перестанет изменяться, т.е. станет равной w0=const. Начальные условия для второго этапа: wнач=0; w0 нач=Dwс ; Mначс.

Законы изменения w и М получим, подставив начальные условия в исходные уравнения

Кривые отражающие процесс на этом этапе изображены на графике (начало координат переносится при этом в т. tз и отсчет времени начинается с момента tз.).

В конце второго этапа (t=t0) двигатель выходит на характеристику, соответствующую w0=const. До этого он последовательно переходит с одной характеристики на другую, каждой из которых соответствует своя w0. Зависимости w=f(t) и М=f(t) позволяют построить фазовую траекторию, т.е. динамическую характеристику (см.график).

На третьем этапе (III) двигатель работает при неизменном U (неизменной частоте f1) при w0=const. Происходит дотягивание до скорости, соответствующей установившемуся режиму в т.А. На этом этапе законы изменения w и М описываются уравнениями соответствующими w0=const, т.е. постоянству управляющего воздействия (постоянству U сети или постоянству частоты f1

Начало координат при этом надо перенести в т. t0, т.е. время на этом этапе отсчитывается от t0. Общее время переходного процесса tпп=tз+t0+3TM.

Переходный процесс электропривода с линейной механической характеристикой при реверсе и w0=f(t)

При активном Мс переходный процесс в случае плавного изменения управляющего воздействия (U1 или f1) при котором w0 изменяется по закону

исходными уравнениями для анализа переходного процесса являются те же, что и при реактивном Мс. Считаем, что w0 изменяется от w0 ном до -w0 ном. Реверс разбивается на два этапа. Первый этап заканчивается когда w0 станет равной -w0 ном и двигатель выходит на характеристику, соответствующую этой скорости.

Подставляя в исходные уравнения значения w0 нач =w0 ном, wнач =wс, Мначс и учитывая, что ускорение e0 при снижении скорости отрицательно, получим для первого этапа реверса законы изменения w и М

 

В зависимости от соотношения Мс, e0 и Тм суммарный перепад скорости

может быть больше, равен или меньше 0. Если , двигатель в процессе снижения скорости продолжает работать в двигательном режиме, Dwс> 0, а при изменении знака w, т.е. изменении направления вращения, переходит в тормозной режим с w> w0.

При двигатель при снижении скорости работает в тормозном режиме с w> w0, а при разгоне в противоположном направлении переходит в двигательный режим (пунктирная кривая на графике ).

На втором (II) этапе процесс протекает при w0 =-w0 ном=const и описывается уравнениями как при питании от сети с неизменным напряжением (частотой). Длительность этого этапа

~ 3ТМ. Происходит дотягивание до скорости -wс.

Процесс реверса при реактивном Мс рассмотрим на примере электропривода с ДНВ при линейном изменении напряжения на якоре двигателя

В процессе торможения закон движения электропривода тот же, что и при активном Мс. Начальная разность между напряжением Uя=Uн на якоре и ЭДС двигателя Е=КФwс, равная падению напряжения на сопротивлении якорной цепи от тока статической нагрузки JcRяS, уменьшается до значения, равного падению напряжения от установившегося тока при реверсе

. Ток якоря при этом уменьшается от значения Ic до Iр.уст и затем остается неизменным до w=0. В момент перехода w через 0 Мс изменяет свой знак.

Для того, чтобы начался разгон в противоположную сторону, необходимо, чтобы ток тоже изменил направление на противоположное и увеличился после этого до значения, превышающего .Поэтому возникает пауза в движении, аналогичная времени запаздывания пр пуске в ход.

 

 

Во время этой паузы ток нарастает (см. график) по закону

; а w=0

Пауза заканчивается, когда ток станет равным –Ic и двигатель начинает вращаться в противоположном направлении. Далее процесс будет протекать аналогично случаю пуска. Время паузы

Если увеличивать темп изменения Uя, т.е. величину , то вследствие роста динамического тока Iдин=Iс-Iр.уст при торможении ток Iр.уст=Iс-Iдин вначале будет уменьшаться

до 0, а затем изменит свой знак. При этом tп уменьшается и при Iр.уст=Iс становится равным 0. Из уравнения движения для этого случая –М-Мс=ISe0 можно определить ускорение e0` соответствующее этому условию

Если , то процесс изменения w при реверсе является непрерывным, лишь при переходе w через 0 скачком изменяется ускорение. Для рассмотренного случая на левом графике изображена и динамическая характеристика.

Рассмотренные переходные процессы позволяют сделать выводы: 1) Задаваемый на входе системы закон изменения скорости w воспроизводится с ошибкой, которая в установившемся переходном процессе складывается из ошибки, равной статическому перепаду скорости Dwс и ошибки, равной динамическому падению

;

Увеличение b статической механической характеристики влечет за собой соответствующее уменьшение отклонения кривой w=f(t) от кривой w0=f(t).

2). Закон изменения UЯ для двигателей постоянного тока или частоты f1 для двигателей переменного тока определяет характер изменения w в переходном режиме с тем большей точностью, чем меньше Тм. Этот вывод справедлив не только для случая линейного закона изменения управляющего воздействия, но и, например, для экспоненциального закона. В качестве примера оценим характер изменения ЭДС двигателя, пропорциональной скорости w в переходном процессе пуска двигателя постоянного тока при Мс=0, когда Uя измениться по закону , где Тип – электромагнитная постоянная времени источника питания. Пусть Тип> > Тм. Начальная часть кривой UЯ близка прямой 1, соответствующей неизменному значению . Если бы UЯ нарастало по линейному закону, ток изменялся бы по закону экспоненты (кривая 2) с постоянной Тм, стремясь к значению Iмакс. Но поскольку темп нарастания UЯ в действительности уменьшается, ток, достигнув значения I``макс при t=tмакс, начнет уменьшаться по закону близкому к закону, определяющему темп изменения напряжения . ЭДС двигателя изменяется по кривой 3, отличаясь от UЯ в каждый момент времени на величину падения напряжения в цепи якоря при данном токе. Чем меньше ТМ, тем меньше падение напряжения, тем ближе кривая 3 к кривой UЯ.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-04; Просмотров: 698; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.036 с.)
Главная | Случайная страница | Обратная связь