![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Долговечность и старение материалов в условиях воздействующих факторов
Природные факторы старения. Техногенные факторы старения. Коррозия металлов и композитов. Электрокоррозия. Защита от коррозии. Старением материала называются необратимые процессы физических и химических превращений материала, происходящие под действием внешних физических, химических и биологических факторов и вызывающие ухудшение электрических и механических показателей материала. Долговечность материалов в условиях эксплуатации определяется не только свойствами материалов, но и действием разнообразных факторов, вызывающих изменение характеристик материалов. Основные факторы, изменяющие свойства материалов можно разделить на природные и техногенные факторы. Природные факторы старения Здесь можно выделить физические, химические, биологические факторы.
Одну из главных ролей играет температурный коэффициент расширения Ткl. Ясно, что различные материалы имеют различные коэффициенты линейного расширения. Поэтому они удлиняются по-разному при нагревании, а соответственно и сокращаются по-разному при охлаждении. Поскольку любое изделие состоит из частей, изготовленных из различных материалов, то само механическое сочленение материалов при изменении температуры вызывает появление механических напряжений в обоих материалах. Рассмотрим чуть более подробно. Представим, что соединены два материала с коэффициентами Ткl1 и Ткl2 при комнатной температуре. При нагревании на 100 °С каждый из них должен удлиниться на величину Dl1 = l0× Ткl1× DT и × Dl2 = l0× Ткl2× DT. Поскольку они механически связаны, то они удлинятся оба на какую-то среднюю величину, зависящую от сжимаемости каждого материала. Если считать механические характеристики одинаковыми, то удлинение произойдет на величину (Dl1+ Dl2)/2. Предположим, что Dl1 > Dl2, тогда первый материал окажется в сжатом состоянии. Его сжатие относительно равновесного состояния составит (Dl1-× Dl2)/2. Второй материал окажется в растянутом состоянии, его удлинение составит (Dl1-Dl2)/2. В соответствии с законом Гука, это эквивалентно приложению к первому материалу сжимающих усилий, по величине равных (Dl1-Dl2)/2l0 = p /E где p = F/s- механическое напряжение, E - модуль Юнга или модуль всестороннего сжатия (или растяжения). Подставляя выражение Dl через Ткl получим сжимающее усилие, действующее на первый материал p = E× (Ткl1- Ткl2)× DT/2 Точно такое же, но растягивающее усилие будет приложено ко второму материалу. Оценим значимость эффекта для стали. В этом случае E » 2× 1011 Н/м2, Ткl1- Ткl2 при неудачном выборе компонент может составить 10-5 1/К. Тогда p составит 108 Н/м2. Натяжение 100 МПа не превышает предела текучести материала, но при многократных циклах " нагревание-охлаждение" может привести к постепенному ухудшению свойств материала, росту трещин и т.п. Другим важным фактором старения, также связанным с изменением температуры, является переход через нулевую температуру. При замерзании воды ее объем увеличивается, поэтому, если вода попала в какую-нибудь трещину в материале, она при превращении в лед начнет расширяться, что вызовет рост этой трещины. При таянии вода заполнит свежеобразованный участок трещины, а при повторном замерзании произойдет дальнейший рост трещины. Такой тип старения характерен для каменных материалов. С температурой также связано старение трансформаторного масла. И это уже физико-химический фактор. При росте температуры резко (экспоненциально) растет скорость химических реакций, в том числе реакций окисления. Поэтому, если в кабеле или трансформаторе где-то начинается рост температуры, например за счет частичных разрядов, диэлектрических потерь или нагрева обмотки (например, при феррорезонансе), то активизируются процессы разложения масла, что приводит к ухудшению его диэлектрических характеристик. Из других физических воздействий отметим действие ультрафиолета и озона. Характеристиками светостойкостью и озоностойкостью должны обладать изоляторы, работающие на линиях электропередач. Актуально это только для полимерных изоляторов, т.к. фотоны света и активные молекулы озона могут приводить к деструкции полимера. На долговечность линий электропередач сильное влияние оказывают ветровые нагрузки. Это и т.н. " пляска проводов", возникающая при порывах ветра, и " парусность" опор и проводов. Возникающие при этом механические нагрузки в опорах, растяжках, проводах могут привести к их деформации и разрушению.
Вообще, на биологический фактор стали обращать пристальное внимание в последнее время, причем с несколько неожиданной стороны - экологической, что связано с загрязнением природы техногенными веществами. Это более актуально для жидких диэлектриков. Поскольку утечки диэлектриков из работающего оборудования всегда происходят, желательно чтобы природа сама справлялась с ними. Поэтому среди характеристик жидкостей появился такой параметр, как биоразлагаемость. Вещество, при попадании в окружающую среду должно разлагаться, чтобы не происходило загрязнения природы. Этому условию отвечает обычное трансформаторное масло, а, например, хлордифенилы, или фторорганические вещества - не отвечают. Возвращаясь к биологическим факторам. Стойкость твердых материалов против грибков наиболее актуальна для тропических условий, поэтому при поставке энергооборудования в тропические страны, необходимо выбирать наиболее стойкие материалы. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 1589; Нарушение авторского права страницы