|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Решение контрольных задач по теме «Теория графов».
Задание 1. Компоненты сильной связности ориентированного графа.
С помощью матрицы смежности найти компоненты сильной связности ориентированного графа D. Cоставляем матрицу смежности A(D) размерности Для того, чтобы выделить компоненты сильной связности, необходимо сначала найти матрицу достижимости T(D) ориентированного графа по первой формуле утверждения 3, затем находим матрицу сильной связности S(D) ориентированного графа (она должна быть симметрической) по второй формуле из того же утверждения.
Алгоритм выделения компонент сильной связности 1. Присваиваем p=1 (p − количество компонент связности), 2. Включаем в множество вершин Vp компоненты сильной связности Dp вершины, соответствующие единицам первой строки матрицы Sp. В качестве матрицы A(Dp) возьмем подматрицу матрицы A(D), состоящую из элементов матрицы A, находящихся на пересечении строк и столбцов, соответствующих вершинам из Vp. 3. Вычеркиваем из Sp строки и столбцы, соответствующие вершинам из Vp. Если не остается ни одной строки (и столбца), то p- количество компонент сильной связности. В противном случае обозначим оставшуюся после вычеркивания срок и столбцов матрицу как Sp+1, присваиваем p=p+1 и переходим к п. 2.
Пример Выделим компоненты связности ориентированного графа, изображенного на рис. 6. В данной задаче количество вершин n=5.
Рис. 6.
Значит, для данного ориентированного графа матрица смежности будет иметь размерность 5× 5 и будет выглядеть следующим образом
Найдем матрицу достижимости для данного ориентированного графа по формуле 1) из утверждения 3:
Следовательно,
Таким образом, матрица сильной связности, полученная по формуле 2) утверждения 3, будет следующей:
Присваиваем p=1 Вычеркиваем из матрицы S1(D) строку и столбец, соответствующие вершине v1, чтобы получить матрицу S2(D):
Присваиваем p=2. Множество вершин второй компоненты связности составят те вершины, которым соответствуют единицы в первой строке матрицы S2(D), то есть
Вычеркиваем из матрицы S2(D) строки и столбцы, соответствующие вершинам из V2, чтобы получить матрицу S3(D), которая состоит из одного элемента:
и присваиваем p=3. Таким образом, третья компонента сильной связности исходного графа, как и первая, состоит из одной вершины Таким образом, выделены 3 компоненты сильной связности ориентированного графа D:
Задание 2. Расстояния в ориентированном графе
С помощью алгоритма фронта волны найти расстояния в ориентированном графе D: диаметр, радиус и центры. Пусть
Алгоритм поиска минимального пути из (алгоритм фронта волны). 1) Помечаем вершину 2) Если В противном случае продолжаем: 3) Если В противном случае мы нашли минимальный путь из
есть этот минимальный путь. Работа завершается. 4) Помечаем индексом k+1 все непомеченные вершины, которые принадлежат образу множества вершин c индексом k. Множество вершин с индексом k+1 обозначаем Замечания · Множество · Вершины Чтобы найти расстояния в ориентированном графе, необходимо составить матрицу минимальных расстояний R(D)между его вершинами. Это квадратная матрица размерности Сначала составляем матрицу смежности. Затем переносим единицы из матрицы смежности в матрицу минимальных расстояний ( Рассматриваем первую строку, в которой есть единицы. Пусть это строка − i-тая и на пересечении с j-тым столбцом стоит единица (то есть Примечание: В контрольной работе самый длинный путь найти при помощи алгоритма фронта волны.
Пример Найдем расстояния в ориентированном графе D, изображенном на рис. 7. В данной задаче количество вершин n=7, следовательно, матрицы смежности и минимальных расстояний между вершинами ориентированного графа D будут иметь размерность 7× 7.
Рис.7.
Матрица смежности:
Начинаем заполнять матрицу R(D) минимальных расстояний: сначала ставим нули по главной диагоналии rij=aij, если aij=1, (т.е. переносим единицы из матрицы смежности). Рассматриваем первую строку. Здесь есть две единицы, то есть из первой вершины за один шаг можно попасть во вторую и шестую. Из второй вершины можно попасть за один шаг в третью (путь в первую вершину нас не интересует), следовательно, можно записать
Таким образом, диаметром исследуемого ориентированного графа будет Для каждой вершины заданного ориентированного графа найдем максимальное удаление (эксцентриситет) в графе G от вершины нее по формуле, которая была приведена выше r(v1)=3, r(v2)=3, r(v3)=5, r(v4)=4, r(v5)=2, r(v6)=2, r(v7)=3. Значит, радиусомграфа G будет Соответственно, центрами графа G будут вершины v5 и v6, так как величины их эксцентриситетов совпадают с величиной радиуса Опишем теперь нахождение минимального пути из вершины v3 в вершину v6 по алгоритму фронта волны. Обозначим вершину v3 как V0, а вершину v6 - как W (см. рис. 8). Множество вершин, принадлежащих образу V0, состоит из одного элемента - это вершина v4, которую, согласно алгоритму, обозначаем как V1: FW1(v3)={v4}. Поскольку искомая вершина не принадлежит фронту волны первого уровня
Рис.8. Задание 3. Минимальный путь в нагруженном ориентированном графе
Найти минимальный путь в нагруженном ориентированном графе из вершины Рассмотрим сначала общую задачу – нахождения минимального пути из вершины vнач в vкон. Пусть D=(V, X) – нагруженный ориентированный граф, V={v1, …, vn}, n> 1. Введем величины Для каждого фиксированного i и k величина Положим также Составляем матрицу длин дуг C(D)=[cij] порядка n:
Утверждение. При i=2, …, n, k³ 0 выполняется равенство
Алгоритм Форда-Беллмана нахождения минимального пути в нагруженном ориентированном графе D из vнач в vкон.( vнач ≠ vкон). ( 1) Составляем таблицу 2) Если 3) Затем определяем номера i2, …,
то есть восстанавливаем по составленной таблице и матрице стоимости искомый минимальный путь из vнач в vкон.
Пример Найдем минимальный путь из вершины v2 в v6 в ориентированном нагруженном графе D, изображенном на рис. 9. В рассматриваемом графе количество вершин n=7, следовательно, матрица длин дуг ориентированного графа D будет иметь размерность 7× 7.
Рис. 9.
Матрица длин дуг для рассматриваемого графа будет выглядеть следующим образом:
Согласно алгоритму, составляем таблицу стоимости минимальных путей из вершины v2 в вершину vi не более, чем за k шагов, k=0, …n-1 (n=7, следовательно, k=0, …6). Как было определено выше, В конечном итоге получаем следующую таблицу:
Теперь необходимо по построенной таблице и по матрице C(D) восстановить минимальный путь из вершины v2 в v6, который будет строиться с конца, то есть, начиная с вершины v6. Для этого выбираем минимальное из чисел, стоящих в строке, соответствующей v6 в таблице. Это число – 21 – длина минимального искомого пути. В первый раз такая длина была получена при количестве шагов, равном 4. В вершину v6 мы можем попасть за один шаг из вершин v1 и v7 (длина соответствующих дуг 8 и 5 соответственно – данные из матрицы C(D)). Выбираем минимальную по длине из этих дуг. Далее, в вершину v7 можно попасть из v4 и v5(длина соответствующих дуг 7 и 3 соответственно). Продолжая аналогичным образом, найдем искомый путь за 4 шага минимальной длины из вершины v2 в v6: v2 v3 v5 v7 v6.
Задание 4. Эйлеровы циклы и цепи
Найти Эйлерову цепь в неориентированном графе. Исходя из утверждений 1 и 2, чтобы найти Эйлерову цепь, нужно соединить две вершины с нечетными степенями фиктивным ребром. Тогда задача сводится к нахождению Эйлерова цикла по приведенному ниже алгоритму. Из найденного цикла удаляется фиктивное ребро, тем самым находится искомая Эйлерова цепь.
Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 3292; Нарушение авторского права страницы