Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


РЕАКЦИИ МИКРООРГАНИЗМОВ НА ТЯЖЕЛЫЕ МЕТАЛЛЫ И ТОКСИЧНЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ



Среди микроорганизмов есть формы, устойчивые к действию общих клеточных и метаболических ядовитых веществ (фенол, окись углерода, сероводород и др.), отдельные виды обладают способностью использовать эти соединения в качестве источников питания. Считают, что устойчивость микроорганизмов к токсичным веществам во многих случаях определяется плазмидами.

В выработке устойчивости бактерий к токсичным веществам участвуют трансмиссивные плазмиды, несущие гены множественной устойчивости — R-факторы (от англ. resistance — устойчивость). R - факторы обусловливают устойчивость микроорганизмов к нескольким (девять и более) группам веществ — солям тяжелых металлов, а также антибиотикам, лекарственным веществам, и др.

Микробы способны концентрировать тяжелые металлы внутри клеток или на их поверхности. Известны следующие соотношения концентраций различных металлов, содержащихся в морской воде и планктоне: кадмий—1: 910, кобальт—1: 4600, медь—1: 7000, железо — 1: 87 000, свинец — 1: 41 000, марганец — 1: 9400, титан— 1: 20 000 и цинк—1: 65 000. В общем конечная концентрация металла внутри клетки может быть на несколько порядков выше его концентрации в окружающей среде. В одних случаях накопление соответствующих соединений оказывается летальным, а в других — нет. На поглощение ионов металлов могут оказывать влияние физиологическое состояние клеток и условия окружающей среды.

Изложенное выше показывает, что у некоторых микроорганизмов выработались специфические механизмы взаимодействия с тяжелыми металлами, мышьяком и сурьмой, присутствующими в окружающей среде, иногда в концентрациях, которые токсичны для многих других микробов и высших форм жизни. Микроорганизмы могут использовать эти вещества в качестве источников энергии или акцепторов электронов в процессе дыхания. В ряде случаев у микробов выработались способы удаления этих веществ из среды путем их осаждения, адсорбции или улетучивания. Эти реакции вносят вклад в детоксикацию среды, которая становится более пригодной не только для микробов, катализирующих такие реакции, но и для других организмов, неспособных развиваться без подобной «помощи».

19. 5. РЕАКЦИИ МИКРООРГАНИЗМОВ НА ТЯЖЕЛЫЕ МЕТАЛЛЫ И ТОКСИЧНЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ

20. Среди микроорганизмов есть формы, устойчивые к действию общих клеточных и метаболических ядовитых веществ (фенол, окись углерода, сероводород и др.), отдельные виды обладают способностью использовать эти соединения в качестве источников питания. Считают, что устойчивость микроорганизмов к токсичным веществам во многих случаях определяется плазмидами.

21. В выработке устойчивости бактерий к токсичным веществам участвуют трансмиссивные плазмиды, несущие гены множественной устойчивости — R-факторы (от англ. resistance— устойчивость). R- факторы обусловливают устойчивость микроорганизмов к нескольким (девять и более) группам веществ — солям тяжелых металлов, а также антибиотикам, лекарственным веществам, и др. Гены, которые определяют устойчивость бактерий, могут находиться в транспозонах, способных перемещаться в разные участки хромосомы и на плазмиды. Распространению множественной устойчивости бактерий способствует комбинация трансмиссивной плазмиды с транспозоном.

22. Влияние на микроорганизмы токсичных веществ в небольших концентрациях, не вызывающих их гибели, рассматривают как один из вариантов стрессовых (от англ. stress — напряжение) воздействий. В таких условиях включаются специальные механизмы клеточного метаболизма, которые обеспечивают выживание бактерий (Бухарин О.В., 2005).

23. Микроорганизмы по-разному реагируют на тяжелые металлы в зависимости от вида микроорганизма и концентрации тяжелых металлов в среде. Это справедливо также для мышьяка и сурьмы. Всем микробам в качестве компонентов питания необходимы те или иные тяжелые металлы, такие, как Со, Си, Fe, Мп и Zn. Некоторые микроорганизмы нуждаются также в Мо, V и Ni. Все эти металлы участвуют в основном в ферментативном катализе и должны присутствовать в питательной среде лишь в очень низких концентрациях, обычно порядка нескольких микрограммов на один литр. Ряд микроорганизмов способен осуществлять активный транспорт некоторых из этих элементов внутрь клетки. Существуют бактерии и грибы, которые вырабатывают специальные хелатобразующие вещества, облегчающие проникновение железа в клетку при нейтральных значениях рН. Это проникновение происходит в результате активного транспорта хелатного железа и распада хелата после его переноса через плазматическую мембрану. Даже токсичный ион арсената может проникнуть в клетку путем активного транспорта, как в случае Saccharomyces cerevisiae.

24. Любой из металлов, а также мышьяк или сурьма в достаточно высоких концентрациях становятся токсичными для микроорганизмов. Проявления этой токсичности могут быть различными, например изменение морфологии клеток или клеточного метаболизма, бактериостаз или гибель клеток. В некоторых случаях возникают более толерантные к тяжелому металлу, мышьяку или сурьме резистентные штаммы, т. е. такие, для воздействия на которые необходима более высокая концентрация токсичного вещества, чем для воздействия на родительские штаммы. Обычно эта резистентность обусловлена генетическими модификациями, часто связанными с плазмидами, а иногда — с половым фактором или с хромосомами. Причиной повышенной резистентности может быть уменьшение проницаемости клетки для токсичного вещества или его биохимическое обезвреживание. Показано, что исключительная резистентность Scytalidium к меди (выдерживает концентрацию CuS04 до 1 М) обусловлена кислой реакцией среды (рН от 2, 0 до 0, 3) и неспособностью ионов меди проникать в клетки при таких значениях рН, поскольку при реакции среды, близкой к нейтральной, гриб становится чувствительным к 4 • 10-5 М CuSO4. Одни микробы обезвреживают тяжелые металлы, мышьяк или сурьму, вырабатывая вещества, реагирующие с указанными элементами внутри клетки (например, при метилировании ртути или мышьяка) или вне ее, т. е. делают их недоступными для ассимиляции микробом (например, осаждение арсената или арсенита ионами железа в процессе окисления арсенопирита при участии Thiobacillus ferrooxidans ). Другие микроорганизмы нейтрализуют токсичные соединения, превращая их ферментативным путем в менее вредные (примером может служить восстановление HgCl2 до HgO. Физиологическое состояние организма также определяет его чувствительность к интоксикации тяжелыми металлами, мышьяком или сурьмой.

25. Механизм токсического действия тяжелых металлов, мышьяка и сурьмы зависит от природы соединения и рассматриваемого организма. Одни элементы, такие, как Си, связываются в основном с клеточной поверхностью, где и локализуются вызываемые ими повреждения. Другие элементы, например Hg, проникают внутрь клетки, где связываются с определенными функциональными группами, в частности с SH-группами, инактивируя таким образом жизненно необходимые молекулы, такие, как молекулы ферментов, или откладываются в металлической форме. Существуют также дополнительные механизмы токсического действия тяжелых металлов, мышьяка и сурьмы, обусловленные тем, что последние могут: 1) играть роль антиметаболитов; 2) образовывать стабильные осадки или хелаты с важными метаболитами или катализировать распад таких метаболитов, в результате чего они становятся недоступными для клетки; 3) замещать структурно или электрохимически важные элементы, что приводит к нарушению ферментативной или клеточной функции.

26. Одни микробы окисляют восстановленные формы тяжелых металлов и соединений мышьяка или сурьмы, в то время как другие восстанавливают окисленные формы этих элементов в больших масштабах. При окислении восстановленных соединений металлов по крайней мере некоторые микроорганизмы могут извлекать полезную энергию и восстанавливающую способность. При восстановлении окисленных соединений металлов ряд микробов осуществляет процесс, который является, по-видимому, своеобразной формой дыхания, характеризующейся тем, что окисленные соединения металлов, мышьяка или сурьмы служат частично или исключительно в качестве конечных акцепторов электронов. Такие реакции окисления и восстановления могут иметь фундаментальное значение в перераспределении этих элементов в среде.

27. В табл. 2 перечислены минералы, многие из которых ассоциированы с рудами, подвергающиеся воздействию микроорганизмов.

Таблица № 2. Некоторые природные минералы, содержащие металлы и подвергающиеся воздействию микроорганизмов

28.

 

29. Микробы способны концентрировать тяжелые металлы внутри клеток или на их поверхности. Известны следующие соотношения концентраций различных металлов, содержащихся в морской воде и планктоне: кадмий—1: 910, кобальт—1: 4600, медь—1: 7000, железо — 1: 87 000, свинец — 1: 41 000, марганец — 1: 9400, титан— 1: 20 000 и цинк—1: 65 000. В общем конечная концентрация металла внутри клетки может быть на несколько порядков выше его концентрации в окружающей среде. В одних случаях накопление соответствующих соединений оказывается летальным, а в других — нет. На поглощение ионов металлов могут оказывать влияние физиологическое состояние клеток и условия окружающей среды.

30. Более устойчивы к действию химических веществ из неспорообразующих шаровидные формы. Палочковидные и извитые формы микробов при прочих равных условиях быстрее погибают.

31. Споры почти не содержат свободной воды, имеют плотную двойную оболочку, поэтому отличаются более высокой устойчивостью к действию химических веществ. Таким образом, действие химических веществ зависит от состава, концентрации, экспозиции, температуры и других факторов (Асонов Н.Р., 1997).

32. Кислые сточные воды шахт представляют собой пример условий окружающей среды с исключительно высокими концентрациями тяжелых металлов, а также, возможно, мышьяка и сурьмы, токсичными для многих микроорганизмов. Тем не менее, в этих сточных водах была обнаружена смешанная микрофлора, состоящая из водорослей, грибов, простейших и бактерий, которая, по-видимому, специфически адаптировалась к таким условиям.

33. Изложенное выше показывает, что у некоторых микроорганизмов выработались специфические механизмы взаимодействия с тяжелыми металлами, мышьяком и сурьмой, присутствующими в окружающей среде, иногда в концентрациях, которые токсичны для многих других микробов и высших форм жизни. Микроорганизмы могут использовать эти вещества в качестве источников энергии или акцепторов электронов в процессе дыхания. В ряде случаев у микробов выработались способы удаления этих веществ из среды путем их осаждения, адсорбции или улетучивания. Эти реакции вносят вклад в детоксикацию среды, которая становится более пригодной ие только для микробов, катализирующих такие реакции, но и для других организмов, неспособных развиваться без подобной «помощи» (Кашнер Д., 1981).

34.

 

35. 6.1 Защитные механизмы

36. Одним из универсальных механизмов адаптации к световому излучению высокой интенсивности и защиты от токсичных форм фотосенсибилизированного кислорода является синтез каротиноидных пигментов. Характерным примером может служить яркая окраска микроорганизмов, живущих в условиях высокой освещенности (в воздухе, на поверхности скал, обнажений горных пород, в высокогорье и т.д.) (Заварзин Г.А., 2001).

37. Ранние исследования радиационной резистентности были направлены в первую очередь на поиски внутриклеточных веществ, защищающих организм от повреждений. В настоящее время внимание исследователей концентрируется в основном на механизмах, тем или иным способом исправляющих повреждения в ДНК, индуцируемые облучением. Эти механизмы имеют важное значение. Тем не менее представляется вероятным, что определенную вспомогательную роль играют и защитные механизмы.

38. Для радиорезистентных организмов обычно характерна усиленная пигментация, что чаще всего является причиной резистентности. Пигменты действуют как «энергетические ловушки», препятствующие радиации или ее продуктам достигать ДНК или любых других жизненно важных мишеней.

39. Резистентность может быть обусловлена также присутствием определенных продуктов метаболизма (внутриклеточных радиопротекторов). Так, Е. coli более резистентна при облучении в присутствии экстрактов изМ. radiodurans, чем при облучении в буферном растворе. Защитное действие экстрактов из М. r аdiodu r ansсвязано с уменьшением выхода радикалов при участии механизма, аналогичного тому, который действует в отношении известных химических веществ-протекторов.

40. Своеобразный метаболизм серосодержащих аминокислот у М. radiodurans позволяет думать, что эти аминокислоты выполняют роль сульфгидрильных веществ-протекторов. Зависимость радиорезистентности от концентрации экстракта имеет двухкомпонентный характер: в низких концентрациях он оказывает на тест-организм сенсибилизирующее действие, а в высоких концентрациях — защитное.

41. Радиорезистентность может определяться уровнем каталазной активности в. клетке. Было показано, что для некоторых бактерий с повышенной радиорезистентностью характерно высокое содержание каталазы.

42. С возрастанием радиорезистентности увеличивается длина клеток: значительная часть клеток наиболее резистентных штаммов была в 30—40 раз длиннее нормальных. У клеток этих штаммов наблюдалось также своеобразное явление почкования. У резистентных штаммов, упомянутых выше, удлинение клеток было устойчивым признаком, наблюдавшимся в течение трех лет.

43. К важным факторам, от которых зависит реакция той или иной клеточной системы на любой физический или химический агент, относится состав клеточной стенки. В случае химических мутагенов структура клеточной стенки может определять ее проницаемость, влияя, таким образом, на чувствительность клетки к данному агенту. Хотя структура клеточной стенки не оказывает влияния на проникающую способность ионизирующего излучения, она тем не менее может иметь значение для радиорезистентности микроба. Например, вполне вероятно, что какой-либо связанный с мембраной ферментный комплекс, освобождающийся или активируемый под действием радиации, играет определенную роль в системе (системах) репарации или обусловливает конечную инактивацию клетки. Ионизирующее излучение вызывает освобождение связанной с клеточной поверхностью экзонуклеазы у М. radiodurans. При облучении в дозе 400 крад, сублетальной для этого организма, в клетках остается только 10% фермента, причем степень освобождения фермента зависит от дозы облучения.

44. Микробы-сапрофиты более устойчивы у световому излучению в сравнении с патогенными. Это объясняется тем, что они чаще подвергаются действию прямых солнечных лучей, поэтому являются более адаптированными (Радчук Н.А., Дунаев Г.В., 1991).

45. Увеличение содержания ДНК в клетке служит одним из факторов ее радиорезистентности. Это может быть обусловлено либо увеличением числа нуклеоидов в клетке, либо ее полиплоидностью. Нитевидная форма резистентных клеток Е. coli позволяет предполагать, что в них реализуется первый механизм. Но содержание ДНК в клетках этих штаммов практически не отличается от такового в клетках дикого типа.

46. Определение содержания GC-nap в ДНК восьми видов бактерий показало, что существует обратная зависимость между GC-содержанием и резистентностью клеток к рентгеновским лучам. В то же время между GC-содержанием и резистентностью к УФ-облучению наблюдается прямая зависимость. Такая корреляция утрачивает какой бы то ни было смысл в случае М. radiodurans, резистентного к обоим типам излучения; однако она может иметь некоторое значение при отсутствии у бактерий эффективных систем репарации. Действительно, ДНК М. radiodurans характеризуется тем же нуклеотидным составом, что и ДНК штаммов Pseudomonas, исключительно чувствительных к ионизирующей радиации (Покровский В.И., 1999).

47. 6.1.1 Механизмы репарации ДНК

48. В основе радиорезистентности бактерий лежат разнообразные внутриклеточные процессы, участвующие в репарации поврежденной ДНК. Большую ценность для исследования этих процессов представляет наличие хорошо охарактеризованных мутантных штаммов, радиационная чувствительность которых варьирует в чрезвычайно широких пределах.

49. При помощи генетических скрещиваний были получены двойные и тройные мутанты дрожжей, у которых репаративная активность полностью отсутствует. Сравнительное исследование штамма дикого типа и сверхчувствительных двойных и тройных мутантов S. сеrevisiae показало, что если нормальный штамм довольно легко переносит образование в ДНК почти 16 000 димеров (37% выживания), то двойные и тройные мутанты остаются резистентными в присутствии не более 50 и 1 димера соответственно. Пониженная резистентность таких двойных и тройных мутантов служит убедительным свидетельством в пользу существования различных путей репарации радиационных повреждений.

50. В зависимости от того, участвует ли видимый свет в модификации повреждений ДНК, репарацию можно подразделить на световую и темновую. Конкретно под световой репарацией понимается феномен фотореактивации, впервые описанный у актиномицетов. Механизм фотореактивации действует только на пиримидиновые димеры. В этом процессе участвует фермент фотореактивации, который связывается с димерами. Образующийся фермент-субстратный комплекс активируется видимым светом, что приводит к мономеризации димеров in situ. Таким образом, летальный эффект УФ-облучения существенно снижается, если облученные клетки подвергаются затем воздействию видимого света с длинами волн от 360 до 420 нм (см. рис. 6.1).

51.

52. Рис. 6.1 Световая репарация ДНК

53. Фотореактивация служит мощным инструментом исследования летальных и мутационных повреждений, так как их репарация под влиянием света может быть использована в качестве критерия для решения вопроса о том, обусловлена ли инактивация ДНК образованием пиримидиновых димеров.

54. К другому типу реактивации клеток видимым светом относится его защитное действие. В этом случае увеличение выживаемости клеток наблюдается при освещении их видимым светом перед УФ-облучением. Этот феномен объясняют тем, что видимый свет индуцирует задержку клеточного деления. В результате такой задержки остается больше времени для репарации повреждений, вызываемых УФ-облучением (см. рис. 6.2).

55.

56. Рис. 6.2 Зависимость выживания клеток бактерий от величины облучения

57. Под «темновой репарацией» понимают репарацию без участия света. В настоящее время известны две системы такого типа: эксцизионная репарация и пострепликативная рекомбинационная репарация. Репарация первого типа требует присутствия ферментов, которые узнают нарушения структуры ДНК, удаляют затронутые участки, замещая их нормальными нуклеотидными последовательностями, и, наконец, восстанавливают первоначальную структуру ДНК, замыкая полинуклеотидную цепь (см. рис. 6.3).

58.

59. Рис. 6.3Темновая репарация ДНК

60. Действие разнообразных инактивирующих агентов на клетки может приводить к возникновению в ДНК целого ряда различных повреждений. Детальное изучение системы эксцизионной репарации стало возможным благодаря наличию радиационно-чувствительных мутантов, с помощью которых удалось выделить и охарактеризовать специфические ферменты, принимающие участие в разных стадиях этого процесса. У Е. coli имеется, по крайней мере, четыре таких этапа. На первом этапе происходит разрыв цепи ДНК вблизи повреждения под действием эндонуклеазы, узнающей нарушения структуры ДНК. Такая УФ-специфическая эндонуклеаза была выделена изMicrococcus luteus и Е. coli. За разрывом цепи ДНК следует удаление пиримидиновых димеров, осуществляемое экзонуклеазой. Удаление димеров сопровождается дополнительной деградацией ДНК с образованием брешей, размеры которых варьируют от 20 до 400 нуклеотидов. Затем бреши заполняются с помощью ДНК-полимеразы, использующей в качестве матрицы интактную комплементарную цепь ДНК. Заключительный шаг в этой последовательности событии состоит в восстановлении целостности полинуклеотидной цепи в результате сшивания разрыва лигазой.

61. Второй тип темновой репарации — пострепликативная рекомбинационная репарация — был впервые описан Говард-Флендерсом. Как указывает само название, эта репаративная система устраняет повреждения в ДНК после того, как произошла ее репликация.

62. Клеточная система репликации способна «обходить» некоторые из димеров в матричной цепи ДНК, оставляя в растущей цепи бреши, расположенные напротив каждого из них. Число брешей, возникающих таким путем, примерно соответствует числу димеров в ДНК. В результате процесса, сходного с рекомбинацией и включающего обмен между сестринскими нитями, образуется ДНК с двумя интактными цепями. Обнаружено, что при заполнении брешей происходит обмен между облученной родительской цепью ДНК и необлученной дочерней цепью. Установлено, что для образования интактных, не содержащих димеры молекул ДНК, заполнение брешей не обязательно, вместо этого концентрация димеров может просто постепенно снижаться в ходе последовательных циклов репликации ДНК после облучения (Покровский В.И., 1999).

63. 6.1.2 Механизмы резистентности Micrococcus radiodurans

64. Исключительная резистентность М. radiodurans вызывает особый интерес, исследование кривых выживания выявило очень длинное плечо, выходящее за пределы 1, 5 мрад. Этот организм обладает наивысшей резистентностью к гамма-излучению по сравнению со всеми изученными до сих пор микроорганизмами. Для него характерна также необычайная резистентность к УФ-излучению, превышающая резистентность всех исследованных в этом отношении бактерий. Кривая выживания при УФ-облучении состоит из трех компонентов: очень длинного плеча, доходящего до 9000 эрг-мм-2, экспоненциальной части и выраженного «хвоста», который начинается при 25 000 эрг-мм-2 и тянется значительно дальше 50 000 эрг-мм-2. Наличие большого плеча указывает на существование исключительно эффективной клеточной системы репарации.

65. Имеются различные причины его резистентности к УФ-облучению. В качестве таковых рассматривались экранирование ДНК другими поглощающими соединениями; резистентность, присущая самой ДНК в силу особенностей ее структуры; высокая эффективность репаративных механизмов, а также высокая степень плоидности. Для того чтобы сделать выбор между этими возможностями, исследовались кривые выживания, образование тиминовых димеров как функция дозы УФ-излучения, нуклеотидный состав ДНК и кинетика синтеза ДНК после облучения. В ДНК М. radiodurans при УФ-облучении индуцируется приблизительно втрое меньше тиминовых димеров, чем в ДНК Е. coli. Частично эта разница в димеризации обусловлена различиями в нуклеотидном составе ДНК этих микроорганизмов: у М. radiodurans отношение G + C/A-t-T в 1, 6 раза больше, чем у Е. coli (Белозерский, Спирин, 1960). Возможно, имеет значение также разница в поглощении УФ-излучения в расчете на одну клетку. Показано, что эта величина несколько меньше для М. radiodurans, чем для Е. col i. Неизвестно, полностью ли трехкратная разница в димеризации тимина обусловлена различиями в нуклеотидном составе ДНК и поглощении УФ-излучения в расчете на одну клетку. Во всяком случае сам факт уменьшения числа образующихся димеров совершенно недостаточен для объяснения более высокой радиорезистентности М. radiodurans.

66. При сравнении влияния УФ-облучения на последующий синтез ДНК в клетках М. radiodurans и Е. coliвыяснилось, что одинаковая по продолжительности задержка репликации ДНК возникает у них тогда, когда клетки М. radiodurans облучают в дозе, величина которой в 20 раз превышает соответствующую величину для Е. coli. Это различие обусловлено очень высокой эффективностью удаления димеров тимина у М. radiodurans. Димеры тимина вырезаются из клеточной ДНК до возобновления ее репликации. Механизм вырезания пиримидиновых димеров у этой бактерии настолько эффективен, что гибель клеток происходит по каким-то другим причинам, к числу которых может относиться, например, модификация дезоксицитидина и белков.

67. Повышенная резистентность М. radiodurans к летальному действию облучения явно сопровождается его повышенной резистентностью к индуцированному мутагенезу. Для некоторых радиационно-чувствительных мутантов Е. coll было показано, что характерная для них высокая мутабильность сопутствует их повышенной чувствительности к летальному действию облучения. Ни штамм дикого типа, ни температурно-чувствительный мутант не дают мутаций при УФ-облучении в такой высокой дозе, как 15 000 эрг. Напротив, у Е. coli индуцирование мутаций наблюдается при облучении в дозе 100 эрг.

68. При облучении в дозе 110 крад, вызывающей значительные физико-химические изменения в ДНК Е. coli В/г, выживание М. radiodurans составляет 100%. Процесс репарации радиационных повреждений у М. radioduransисключительно точен и не допускает ошибок; этот факт заслуживает особого внимания и может иметь значение для эволюции организмов. Хотя большинство микроорганизмов не способно репарировать двухцепочные разрывы ДНК, М. radiodurans обладает способностью к репарации таких разрывов, индуцируемых гамма-лучами, чем и объясняется его высокая резистентность к ионизирующему излучению. Ионизирующее излучение индуцирует уМ. radiodurans освобождение связанной с клеточной поверхностью экзонуклеазы. Это явление можно рассматривать как модель освобождения связанных с мембранами репаративных ферментов после облучения. Более подробное исследование энзимологии репарации ДНК у М. radiodurans было бы полезным для углубления понимания молекулярных основ радиорезистентности (Кашнер Д., 1981).

69.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 738; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.036 с.)
Главная | Случайная страница | Обратная связь